دورية أكاديمية

Utility of the food colorant erythrosine B as an effective green probe for quantitation of the anticancer sunitinib. Application to pharmaceutical formulations and human plasma.

التفاصيل البيبلوغرافية
العنوان: Utility of the food colorant erythrosine B as an effective green probe for quantitation of the anticancer sunitinib. Application to pharmaceutical formulations and human plasma.
المؤلفون: El Sharkasy ME; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt., Tolba MM; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt., Belal F; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt., Walash MI; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt., AboShabana R; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
المصدر: Luminescence : the journal of biological and chemical luminescence [Luminescence] 2023 Dec; Vol. 38 (12), pp. 2073-2085. Date of Electronic Publication: 2023 Oct 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley & Sons Country of Publication: England NLM ID: 100889025 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-7243 (Electronic) Linking ISSN: 15227235 NLM ISO Abbreviation: Luminescence Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chichester, Sussex, UK : Wiley & Sons, c1999-
مواضيع طبية MeSH: Erythrosine*/chemistry , Food Coloring Agents*, Humans ; Sunitinib ; Drug Compounding ; Spectrometry, Fluorescence/methods
مستخلص: Sunitinib is a tyrosine kinase inhibitor used for the treatment of renal cell carcinoma and gastrointestinal stromal tumors. In this study, two spectroscopic methods, spectrofluorometric and spectrophotometric, were utilized to quantify sunitinib in different matrices. In method I, the native fluorescence of erythrosine B was quenched by forming ion-pair complex with increasing quantities of sunitinib. This approach was utilized for measuring sunitinib in its dosage forms and spiked plasma. After excitation at 528 nm, the quenching of fluorescence is linearly related to the concentration across the range of 0.05-0.5 μg mL -1 at 550 nm in Britton-Robinson buffer (pH 4.0), with a correlation value of 0.9999 and a high level of sensitivity with detection limit down to 10 ng mL -1 . Method II relies on spectrophotometric measurements of the produced complex at 550 nm across a range of 0.5-10.0 μg mL -1 , with good correlation value of 0.9999. This method has a detection limit down to 0.16 μg mL -1 . The proposed methodologies were validated according to International Conference on Harmonization (ICH) guidelines with satisfactory results. The stoichiometry of the reaction was determined through the application of Job's method, while the mechanism of quenching was investigated by employing the Stern-Volmer plot. The designated methods were used to estimate sunitinib in its capsules and in spiked human plasma. Additionally, the statistical analysis of the data revealed no substantial differences when compared to previous reported spectroscopic method. Green assessment tools provide further details about the eco-friendly nature of the methods.
(© 2023 John Wiley & Sons Ltd.)
References: C. Le Tourneau, E. Raymond, S. Faivre, Ther. Clin. Risk Manag. 2007, 3, 341.
D. Huang, Y. Ding, Y. Li, W.-M. Luo, Z.-F. Zhang, J. Snider, K. VandenBeldt, C.-N. Qian, B. T. Teh, Cancer Res. 2010, 70, 1053.
A. A. van der Veldt, K. Eechoute, H. Gelderblom, J. Gietema, H.-J. Guchelaar, N. P. van Erp, A. J. Van den Eertwegh, J. B. Haanen, R. H. Mathijssen, J. A. Wessels, Clin. Cancer Res. 2011, 17, 620.
J. Kavitha, A. Saidevaraj, K. Lakshmi, Int. J. Pharm. Pharm. Sci. 2016, 8, 99.
E. Souri, E. Amoon, N. S. Ravari, F. Keyghobadi, M. B. Tehrani, Iran. J. Pharm. Res. 2020, 19, 103.
A. Tazeen, M. Shanawaz, I. Rizwana, J. Pharm. Pharm. Sci. 2017, 6, 730.
M. Arıcı, E. Kılınç, Pharm. Sci. 2010, 52, 469.
H. M. Kashani, T. Madrakian, A. Afkhami, New J. Chem. 2017, 41, 6875.
M. Padervand, S. Ghaffari, H. Attar, M. M. Nejad, J. Anal. Chem. 2017, 72, 567.
B. Blanchet, C. Saboureau, A. S. Benichou, B. Billemont, F. Taieb, S. Ropert, A. Dauphin, F. Goldwasser, M. Tod, Clin. Chim. Acta 2009, 404, 134.
B. Sandhya, V. Harika, B. Kasimalla, R. Syed, K. Pammi, Int. J. Sci. Innov. Discov. 2011, 1, 441.
M.-C. Etienne-Grimaldi, N. Renée, H. Izzedine, G. Milano, Journal of Chromatography B 2009, 877, 3757.
I. Garrido-Cano, A. García-García, J. Peris-Vicente, E. Ochoa-Aranda, J. Esteve-Romero, Talanta 2015, 144, 1287.
M. Gurjar, P. Mehta, J. Sharma, S. Patil, P. Kulkarni, A. Patil, M. Nookala, A. Joshi, V. Gota, Bioanalysis 2020, 12, 75.
M. Hajmalek, M. Goudarzi, S. Ghaffari, H. Attar, M. G. Mazlaghan, J. Pharm. Sci. 2016, 52, 595.
M. Helvenstein, S. Hambye, B. Blankert, Curr. Pharm. Anal. 2014, 10, 161.
R. K. Oberoi, R. K. Mittapalli, J. Fisher, W. F. Elmquist, Chromatographia 2013, 76, 1657.
J. Rodríguez, G. Castañeda, L. Muñoz, J. C. Villa, Electrophoresis 2015, 36, 1580.
A. Yarahmadi, T. Madrakian, A. Afkhami, N. R. Jalal, J. Electrochem. Soc. 2019, 166, B1268.
M. L. Verma, Biotechnological approaches in food adulterants, First ed., CRC Press/Taylor & Francis Group, Boca Raton, FL 2020.
E. Gurr, Synthetic dyes in biology, medicine and chemistry, Elsevier, Amsterdam, Netherlands 2012.
A. Townshend, D. Burns, R. Lobinski, E. Newman, G. Guilbault, Z. Marczenko, H. Onishi, Dictionary of analytical reagents, CRC Press, Boca Raton, FL 1993.
S. Wood, D. Metcalf, D. Devine, C. Robinson, J. Antimicrob. Chemother. 2006, 57, 680.
D. A. Rogers, R. G. Brown, Z. C. Brandeburg, E. Y. Ko, M. D. Hopkins, G. LeBlanc, A. A. Lamar, ACS Omega 2018, 3, 12868.
S. M. Derayea, A. A. Hamad, R. Ali, H. R. H. Ali, Microchem. J. 2019, 149, 104024.
F. Ibrahim, R. Aboshabana, H. Elmansi, R Soc Open Sci 2022, 9, 220628.
D. Dagher, H. Elmansi, J. J. Nasr, N. El-Enany, Luminescence 2023, 38, 291.
M. A. Abdel-Lateef, S. M. Derayea, D. A. N. El-Deen, A. Almahri, M. Oraby, R Soc Open Sci 2021, 8, 201545.
A. Almahri, M. A. Abdel-Lateef, E. Samir, S. M. Derayea, M. A. El Hamd, Luminescence 2021, 36, 651.
M. M. Tolba, M. M. Salim, Spectrochim. Acta A 2021, 263, 120156.
A. Almahri, M. A. Abdel-Lateef, Luminescence 2021, 36, 1544.
M. A. Abdel-Lateef, M. A. Omar, R. Ali, S. M. Derayea, Microchem. J. 2019, 145, 672.
M. A. Abdel-Lateef, A. Almahri, S. M. Derayea, E. Samir, Rev. Anal. Chem. 2020, 39, 222.
M.S. Binkadem, H.S. AlSalem, S.T. Al-Goul, M.A. El Hamd, M. Oraby, F.M. Ali Zainy, M.A. Abdel-Lateef, Luminescence 2023.
C. M. Fernández, V. C. Martin, Talanta 1977, 24, 747.
S. P. Chaudhari, P. S. Patil, Int. J. Adv. Pharm. Biol. Chem. 2012, 1, 21.
J. D. Franke, A. L. Braverman, A. M. Cunningham, E. E. Eberhard, G. A. Perry, BioTechniques 2020, 68, 7.
A. A. Hamad, R. Ali, S. M. Derayea, RSC Adv. 2022, 12, 7413.
C. Y. Huang, Enzyme Kinetics Mech Part C: Intermediates, Stereochem Rate Studies 1982, 87, 509.
N. A. Vodolazkaya, Y. A. Gurina, N. V. Salamanova, N. O. Mchedlov-Petrossyan, J. Mol. Liq. 2009, 145, 188.
J. R. Lakowicz, Principles of fluorescence spectroscopy, Springer, Boston, MA 2006.
N. Boens, W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J.-P. Lefevre, B. Valeur, E. Gratton, M. Vandeven, Anal. Chem. 2007, 79, 2137.
ICH Harmonised Tripartite Guidelines, Validation of analytical procedures: text and methodology Q2 (R1). http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html (Accessed March, 2023).
J. N. Miller, J. C. Miller, Statistics and Chemometrics for analytical chemistry, fourth ed., Prentice Hall, Harlow, England 2005.
A. Di Paolo, S. Bracarda, E. Arrigoni, R. Danesi, Front. Pharmacol. 2017, 8, 523.
S. Faivre, C. Delbaldo, K. Vera, C. Robert, S. Lozahic, N. Lassau, C. Bello, S. Deprimo, N. Brega, G. Massimini, J. Clin. Oncol. 2006, 24, 25.
M. Tobiszewski, M. Marć, A. Gałuszka, J. Namieśnik, Molecules 2015, 20, 10928.
A. D. Abelkop, J. D. Graham, T. V. Royer, Persistent, bioaccumulative, and toxic (PBT) chemicals: technical aspects, policies, and practices, CRC Press, Taylor & Francis Group, Boca Raton, FL 2018.
A. L. Leang, J. E. Meyer, C. C. Manahan, D. A. Delistraty, R. J. Rieck, T. P. Powell, M. N. Smith, M. S. Perkins, Integr. Environ. Assess. Manag. 2021, 17, 455.
J. Płotka-Wasylka, Talanta 2018, 181, 204.
F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, Anal. Chem. 2020, 92, 10076.
A. Gałuszka, Z. Migaszewski, J. Namieśnik, Trends Analyt Chem 2013, 50, 78.
فهرسة مساهمة: Keywords: biological fluids; erythrosine B; fluorescence quenching; greenness; sunitinib
المشرفين على المادة: PN2ZH5LOQY (Erythrosine)
V99T50803M (Sunitinib)
0 (Food Coloring Agents)
تواريخ الأحداث: Date Created: 20230925 Date Completed: 20231205 Latest Revision: 20231205
رمز التحديث: 20231215
DOI: 10.1002/bio.4598
PMID: 37747151
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-7243
DOI:10.1002/bio.4598