دورية أكاديمية

Self as a prior: The malleability of Bayesian multisensory integration to social salience.

التفاصيل البيبلوغرافية
العنوان: Self as a prior: The malleability of Bayesian multisensory integration to social salience.
المؤلفون: Scheller M; Department of Psychology, University of Aberdeen, Aberdeen, UK.; Department of Psychology, Durham University, Durham, UK., Fang H; Department of Psychology, University of Aberdeen, Aberdeen, UK., Sui J; Department of Psychology, University of Aberdeen, Aberdeen, UK.
المصدر: British journal of psychology (London, England : 1953) [Br J Psychol] 2024 May; Vol. 115 (2), pp. 185-205. Date of Electronic Publication: 2023 Sep 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 0373124 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2044-8295 (Electronic) Linking ISSN: 00071269 NLM ISO Abbreviation: Br J Psychol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2011- : West Sussex, England : Wiley-Blackwell
Original Publication: London ; New York : Cambridge University Press, [1953]-
مواضيع طبية MeSH: Illusions*, Humans ; Visual Perception ; Auditory Perception ; Bayes Theorem ; Acoustic Stimulation ; Photic Stimulation
مستخلص: Our everyday perceptual experiences are grounded in the integration of information within and across our senses. Due to this direct behavioural relevance, cross-modal integration retains a certain degree of contextual flexibility, even to social relevance. However, how social relevance modulates cross-modal integration remains unclear. To investigate possible mechanisms, Experiment 1 tested the principles of audio-visual integration for numerosity estimation by deriving a Bayesian optimal observer model with perceptual prior from empirical data to explain perceptual biases. Such perceptual priors may shift towards locations of high salience in the stimulus space. Our results showed that the tendency to over- or underestimate numerosity, expressed in the frequency and strength of fission and fusion illusions, depended on the actual event numerosity. Experiment 2 replicated the effects of social relevance on multisensory integration from Scheller & Sui, 2022 JEP:HPP, using a lower number of events, thereby favouring the opposite illusion through enhanced influences of the prior. In line with the idea that the self acts like a prior, the more frequently observed illusion (more malleable to prior influences) was modulated by self-relevance. Our findings suggest that the self can influence perception by acting like a prior in cue integration, biasing perceptual estimates towards areas of high self-relevance.
(© 2023 The Authors. British Journal of Psychology published by John Wiley & Sons Ltd on behalf of The British Psychological Society.)
References: Adams, W. J., Graf, E. W., & Ernst, M. O. (2004). Experience can change the ‘light‐from‐above’ prior. Nature Neuroscience, 7(10), 1057–1058. https://doi.org/10.1038/nn1312.
Alais, D., & Burr, D. (2004). Ventriloquist effect results from near‐optimal bimodal integration. Current Biology, 14(3), 257–262. https://doi.org/10.1016/S0960‐9822(04)00043‐0.
Aller, M., & Noppeney, U. (2019). To integrate or not to integrate: Temporal dynamics of hierarchical Bayesian causal inference. PLoS Biology, 17(4), e3000210. https://doi.org/10.1371/journal.pbio.3000210.
Andersen, T. S., Tiippana, K., & Sams, M. (2004). Factors influencing audiovisual fission and fusion illusions. Cognitive Brain Research, 21(3), 301–308. https://doi.org/10.1016/j.cogbrainres.2004.06.004.
Angelaki, D. E., Gu, Y., & DeAngelis, G. C. (2009). Multisensory integration: Psychophysics, neurophysiology, and computation. Current Opinion in Neurobiology, 19(4), 452–458. https://doi.org/10.1016/j.conb.2009.06.008.
Anobile, G., Cicchini, G. M., & Burr, D. C. (2012). Linear mapping of numbers onto space requires attention. Cognition, 122(3), 454–459. https://doi.org/10.1016/j.cognition.2011.11.006.
Anobile, G., Turi, M., Cicchini, G. M., & Burr, D. C. (2012). The effects of cross‐sensory attentional demand on subitizing and on mapping number onto space. Vision Research, 74, 102–109. https://doi.org/10.1016/J.VISRES.2012.06.005.
Aston, S., Negen, J., Nardini, M., & Beierholm, U. (2022). Central tendency biases must be accounted for to consistently capture Bayesian cue combination in continuous response data. Behavior Research Methods, 54(1), 508–521. 2022, Vol.54(1), Pp.508‐521 [Peer Reviewed Journal]. https://doi.org/10.3758/S13428‐021‐01633‐2.
Beierholm, U. R., Quartz, S. R., & Shams, L. (2009). Bayesian priors are encoded independently from likelihoods in human multisensory perception. Journal of Vision, 9(5), 23. https://doi.org/10.1167/9.5.23.
Bogdanova, O. V., Bogdanov, V. B., Dureux, A., Farnè, A., & Hadj‐Bouziane, F. (2021). The peripersonal space in a social world. Cortex, 142, 28–46. https://doi.org/10.1016/J.CORTEX.2021.05.005.
Bolognini, N., Rossetti, A., Casati, C., Mancini, F., & Vallar, G. (2011). Neuromodulation of multisensory perception: A tDCS study of the sound‐induced flash illusion. Neuropsychologia, 49(2), 231–237. https://doi.org/10.1016/j.neuropsychologia.2010.11.015.
Braithwaite, J. J., Watson, D. G., & Dewe, H. (2017). Predisposition to out‐of‐body experience (OBE) is associated with aberrations in multisensory integration: Psychophysiological support from a ‘rubber hand illusion’ study. Journal of Experimental Psychology: Human Perception and Performance, 43(6), 1125–1143. https://doi.org/10.1037/xhp0000406.
Bresciani, J.‐P., Dammeier, F., & Ernst, M. O. (2006). Vision and touch are automatically integrated for the perception of sequences of events. Journal of Vision, 6(5), 554–564. https://doi.org/10.1167/6.5.2.
Bresciani, J.‐P., Drewing, K., & Ernst, M. O. (2008). Human haptic perception and the design of haptic‐enhanced virtual environments. In A. Bicchi, M. Buss, M. O. Ernst, & A. Peer (Eds.), Springer tracts in advanced robotics (Vol. 45, pp. 61–106). Springer. https://doi.org/10.1007/978‐3‐540‐79035‐8_5.
Bresciani, J.‐P., Ernst, M. O., Drewing, K., Bouyer, G., Maury, V., & Kheddar, A. (2005). Feeling what you hear: Auditory signals can modulate tactile tap perception. Experimental Brain Research, 162(2), 172–180. https://doi.org/10.1007/s00221‐004‐2128‐2.
Bruns, P. (2019). The ventriloquist illusion as a tool to study multisensory processing: An update. Frontiers in Integrative Neuroscience, 13, 51. https://doi.org/10.3389/FNINT.2019.00051/BIBTEX.
Bülthoff, H. H., & Yuille, A. L. (1996). A Bayesian framework for the integration of visual modules. Attention and Performance, 16, 47–70. https://doi.org/10.7551/mitpress/1479.003.0010.
Chen, Y. C., Maurer, D., Lewis, T. L., Spence, C., & Shore, D. I. (2017). Central–peripheral differences in audiovisual and visuotactile event perception. Attention, Perception, and Psychophysics, 79(8), 2552–2563. https://doi.org/10.3758/S13414‐017‐1396‐4/TABLES/1.
Cicchini, G. M., Anobile, G., & Burr, D. C. (2014). Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7867–7872. https://doi.org/10.1073/pnas.1402785111.
Cicchini, G. M., Anobile, G., Chelli, E., Arrighi, R., & Burr, D. C. (2022). Uncertainty and prior assumptions, rather than innate logarithmic encoding, explain nonlinear number‐to‐space mapping. Psychological Science, 33(1), 121–134. https://doi.org/10.1177/09567976211034501.
Cicchini, G. M., Mikellidou, K., & Burr, D. C. (2018). The functional role of serial dependence. Proceedings of the Royal Society B: Biological Sciences, 285(1890), 20181722. https://doi.org/10.1098/rspb.2018.1722.
Constable, M. D., Welsh, T. N., Huffman, G., & Pratt, J. (2019). I before u: Temporal order judgements reveal bias for self‐owned objects. Quarterly Journal of Experimental Psychology, 72(3), 589–598. https://doi.org/10.1177/1747021818762010.
Conway, M. A. (2005). Memory and the self. Journal of Memory and Language, 53(4), 594–628. https://doi.org/10.1016/j.jml.2005.08.005.
Desebrock, C., & Spence, C. (2021). The self‐prioritization effect: Self‐referential processing in movement highlights modulation at multiple stages. Attention, Perception, & Psychophysics, 1–19, 2656–2674. https://doi.org/10.3758/s13414‐021‐02295‐0.
Dewe, H., Watson, D. G., Kessler, K., & Braithwaite, J. J. (2018). The depersonalized brain: New evidence supporting a distinction between depersonalization and derealization from discrete patterns of autonomic suppression observed in a non‐clinical sample. Consciousness and Cognition, 63, 29–46. https://doi.org/10.1016/J.CONCOG.2018.06.008.
Drugowitsch, J., & Pouget, A. (2012). Probabilistic vs. non‐probabilistic approaches to the neurobiology of perceptual decision‐making. Current Opinion in Neurobiology, 22(6), 963–969. https://doi.org/10.1016/j.conb.2012.07.007.
Ernst, M. O. (2007). Learning to integrate arbitrary signals from vision and touch. Journal of Vision, 7(5), 7. https://doi.org/10.1167/7.5.7.
Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433. https://doi.org/10.1038/415429a.
Falbén, J. K., Golubickis, M., Tamulaitis, S., Caughey, S., Tsamadi, D., Persson, L. M., Svensson, S. L., Sahraie, A., & Macrae, C. N. (2020). Self‐relevance enhances evidence gathering during decision‐making. Acta Psychologica, 209, 103122. https://doi.org/10.1016/j.actpsy.2020.103122.
Flanagan, J. R., Bittner, J. P., & Johansson, R. S. (2008). Experience can change distinct size‐weight priors engaged in lifting objects and judging their weights. Current Biology, 18(22), 1742–1747. https://doi.org/10.1016/j.cub.2008.09.042.
Gau, R., & Noppeney, U. (2016). How prior expectations shape multisensory perception. NeuroImage, 124, 876–886. https://doi.org/10.1016/j.neuroimage.2015.09.045.
Golubickis, M., & Macrae, C. N. (2022). Self‐prioritization reconsidered: Scrutinizing three claims. Perspectives on Psychological Science., 18, 876–886. https://doi.org/10.1177/17456916221131273.
Heed, T., Habets, B., Sebanz, N., & Knoblich, G. (2010). Others' actions reduce crossmodal integration in peripersonal space. Current Biology, 20(15), 1345–1349. https://doi.org/10.1016/j.cub.2010.05.068.
Heron, J., Whitaker, D., & McGraw, P. V. (2004). Sensory uncertainty governs the extent of audio‐visual interaction. Vision Research, 44(25), 2875–2884. https://doi.org/10.1016/J.VISRES.2004.07.001.
Hillis, J. M., Watt, S. J., Landy, M. S., & Banks, M. S. (2004). Slant from texture and disparity cues: Optimal cue combination. Journal of Vision, 4(12), 967–992. https://doi.org/10.1167/4.12.1.
Hirst, R. J., McGovern, D. P., Setti, A., Shams, L., & Newell, F. N. (2020). What you see is what you hear: Twenty years of research using the sound‐induced flash illusion. Neuroscience and Biobehavioral Reviews, 118, 759–774. https://doi.org/10.1016/j.neubiorev.2020.09.006.
Humphreys, G. W., & Sui, J. (2016). Attentional control and the self: The Self‐Attention Network (SAN). Cognitive Neuroscience, 7(1–4), 5–17. https://doi.org/10.1080/17588928.2015.1044427.
Innes‐Brown, H., Barutchu, A., & Crewther, D. P. (2013). Neural responses in parietal and occipital areas in response to visual events are modulated by prior multisensory stimuli. PLoS One, 8(12), e84331. https://doi.org/10.1371/journal.pone.0084331.
Kamke, M. R., Vieth, H. E., Cottrell, D., & Mattingley, J. B. (2012). Parietal disruption alters audiovisual binding in the sound‐induced flash illusion. NeuroImage, 62(3), 1334–1341. https://doi.org/10.1016/j.neuroimage.2012.05.063.
Katzin, N., Rosenbaum, D., & Usher, M. (2021). The averaging of numerosities: A psychometric investigation of the mental line. Attention, Perception, and Psychophysics, 83(3), 1152–1168. https://doi.org/10.3758/S13414‐020‐02140‐W.
Keil, J. (2020). Double flash illusions: Current findings and future directions. Frontiers in Neuroscience, 14, 298. https://doi.org/10.3389/fnins.2020.00298.
Knill, D. C. (2007). Learning Bayesian priors for depth perception. Journal of Vision, 7(8), 13. https://doi.org/10.1167/7.8.13.
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712–719. https://doi.org/10.1016/j.tins.2004.10.007.
Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal inference in multisensory perception. PLoS One, 2(9), e943. https://doi.org/10.1371/journal.pone.0000943.
Lee, N. A., Martin, D., & Sui, J. (2021). A pre‐existing self‐referential anchor is not necessary for self‐prioritisation. Acta Psychologica, 219, 103362. https://doi.org/10.1016/j.actpsy.2021.103362.
Li, B., Hu, W., Hunt, A., & Sui, J. (2022). Self‐related objects increase alertness and orient attention through top‐down saliency. Attention, Perception, & Psychophysics, 84, 408–417. https://doi.org/10.3758/s13414‐021‐02429‐4.
Liu, M., He, X., Rotsthein, P., & Sui, J. (2016). Dynamically orienting your own face facilitates the automatic attraction of attention. Cognitive Neuroscience, 7(1–4), 37–44. https://doi.org/10.1080/17588928.2015.1044428.
Liu, Y. S., Song, Y., Lee, N. A., Bennett, D. M., Button, K. S., Greenshaw, A., Cao, B., & Sui, J. (2022). Depression screening using a non‐verbal self‐association task: A machine‐learning based pilot study. Journal of Affective Disorders, 310, 87–95. https://doi.org/10.1016/j.jad.2022.04.122.
Ma, W. J. (2012). Organizing probabilistic models of perception. Trends in Cognitive Sciences, 16(10), 511–518. https://doi.org/10.1016/J.TICS.2012.08.010.
Magnotti, J. F., & Beauchamp, M. S. (2017). A causal inference model explains perception of the McGurk effect and other incongruent audiovisual speech. PLoS Computational Biology, 13(2), e1005229. https://doi.org/10.1371/journal.pcbi.1005229.
Markus, H. (1977). Self‐schemata and processing information about the self. Journal of Personality and Social Psychology, 35(2), 63–78. https://doi.org/10.1037/0022‐3514.35.2.63.
Martin, B., Wiener, M., & Van Wassenhove, V. (2017). A Bayesian perspective on accumulation in the magnitude system. Scientific Reports, 7(1), 630. https://doi.org/10.1038/S41598‐017‐00680‐0.
McGovern, D. P., Roudaia, E., Stapleton, J., McGinnity, T. M., & Newell, F. N. (2014). The sound‐induced flash illusion reveals dissociable age‐related effects in multisensory integration. Frontiers in Aging Neuroscience, 6, 250. https://doi.org/10.3389/FNAGI.2014.00250/BIBTEX.
Mishra, J., Martinez, A., & Hillyard, S. A. (2008). Cortical processes underlying sound‐induced flash fusion. Brain Research, 1242, 102–115. https://doi.org/10.1016/j.brainres.2008.05.023.
Mishra, J., Martínez, A., & Hillyard, S. A. (2010). Effect of attention on early cortical processes associated with the sound‐induced extra flash illusion. Journal of Cognitive Neuroscience, 22(8), 1714–1729. https://doi.org/10.1162/jocn.2009.21295.
Mishra, J., Martinez, A., Sejnowski, T. J., & Hillyard, S. A. (2007). Early cross‐modal interactions in auditory and visual cortex underlie a sound‐induced visual illusion. Journal of Neuroscience, 27(15), 4120–4131. https://doi.org/10.1523/JNEUROSCI.4912‐06.2007.
Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11(1), 56–60. https://doi.org/10.1080/17470215908416289.
Noel, J. P., Blanke, O., & Serino, A. (2018). From multisensory integration in peripersonal space to bodily self‐consciousness: From statistical regularities to statistical inference. Annals of the new York Academy of Sciences, 1426(1), 146–165. https://doi.org/10.1111/nyas.13867.
Northoff, G. (2016). Is the self a higher‐order or fundamental function of the brain? The “basis model of self‐specificity” and its encoding by the brain's spontaneous activity. Cognitive Neuroscience, 7(1–4), 203–222. https://doi.org/10.1080/17588928.2015.1111868.
Odegaard, B., Wozny, D. R., & Shams, L. (2016). The effects of selective and divided attention on sensory precision and integratison. Neuroscience Letters, 614, 24–28. https://doi.org/10.1016/J.NEULET.2015.12.039.
Philippi, T. G., van Erp, J. B. F., & Werkhoven, P. J. (2008). Multisensory temporal numerosity judgment. Brain Research, 1242, 116–125. https://doi.org/10.1016/J.BRAINRES.2008.05.056.
Philippi, T. G., van Erp, J. B. F., & Werkhoven, P. J. (2011). Multisensory effects differ for counting small and large pulse numbers. Seeing and Perceiving, 24(6), 565–578. https://doi.org/10.1163/187847611X595882.
Pomè, A., Thompson, D., Burr, D. C., & Halberda, J. (2021). Location‐ and object‐based attention enhance number estimation. Attention, Perception, and Psychophysics, 83(1), 7–17. https://doi.org/10.3758/S13414‐020‐02178‐W/FIGURES/7.
Reuther, J., & Chakravarthi, R. (2017). Does self‐prioritization affect perceptual processes? Visual Cognition, 25(1–3), 381–398. https://doi.org/10.1080/13506285.2017.1323813.
Rogers, T. B., Kuiper, N. A., & Kirker, W. S. (1977). Self‐reference and the encoding of personal information. Journal of Personality and Social Psychology, 35(9), 677–688. https://doi.org/10.1037/0022‐3514.35.9.677.
Rohde, M., van Dam, L. C. J., & Ernst, M. (2016). Statistically optimal multisensory Cue integration: A practical tutorial. Multisensory Research, 29(4–5), 279–317.
Rohe, T., Ehlis, A. C., & Noppeney, U. (2019). The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nature Communications, 10(1), 1907. https://doi.org/10.1038/s41467‐019‐09664‐2.
Rohe, T., & Noppeney, U. (2015). Cortical hierarchies perform Bayesian causal inference in multisensory perception. PLoS Biology, 13(2), e1002073. https://doi.org/10.1371/journal.pbio.1002073.
Schäfer, S., Frings, C., & Wentura, D. (2016). About the composition of self‐relevance: Conjunctions not features are bound to the self. Psychonomic Bulletin and Review, 23(3), 887–892. https://doi.org/10.3758/s13423‐015‐0953‐x.
Scheller, M., Petrini, K., & Proulx, M. J. (2018). Perception and interactive technology. In J. T. Wixted, & J. Serences (Eds.), Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience (Vol. 2, pp. 1–50). John Wiley & Sons. https://doi.org/10.1002/9781119170174.epcn215.
Scheller, M., & Sui, J. (2022a). Social relevance modulates multisensory integration. Journal of Experimental Psychology: Human Perception and Performance, 48, 1022–1038. https://doi.org/10.1037/xhp0001013.
Scheller, M., & Sui, J. (2022b). The power of the self: Anchoring information processing across contexts. Journal of Experimental Psychology: Human Perception and Performance., 48, 1001–1021.
Shams, L., & Beierholm, U. (2011). Humans' multisensory perception, from integration to segregation, follows Bayesian inference. In J. Trommershäuser, K. Kording, & M. S. Landy (Eds.), Sensory Cue integration (pp. 251–262). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195387247.003.0013.
Shams, L., & Beierholm, U. (2022). Bayesian causal inference: A unifying neuroscience theory. Neuroscience and Biobehavioral Reviews, 137, 104619. https://doi.org/10.1016/J.NEUBIOREV.2022.104619.
Shams, L., & Beierholm, U. R. (2010). Causal inference in perception. Trends in Cognitive Sciences, 14(9), 425–432. https://doi.org/10.1016/j.tics.2010.07.001.
Shams, L., Iwaki, S., Chawla, A., & Bhattacharya, J. (2005). Early modulation of visual cortex by sound: An MEG study. Neuroscience Letters, 378(2), 76–81. https://doi.org/10.1016/j.neulet.2004.12.035.
Shams, L., Kamitani, Y., & Shimojo, S. (2000). Illusions: What you see is what you hear. Nature, 408(6814), 788. https://doi.org/10.1038/35048669.
Shams, L., Kamitani, Y., & Shimojo, S. (2002). Visual illusion induced by sound. Cognitive Brain Research, 14(1), 147–152. https://doi.org/10.1016/S0926‐6410(02)00069‐1.
Shams, L., Ma, W. J., & Beierholm, U. (2005). Sound‐induced flash illusion as an optimal percept. Neuroreport, 16(17), 1923–1927. https://doi.org/10.1097/01.wnr.0000187634.68504.bb.
Sui, J. (2016). Self‐reference acts as a Golden thread in binding. Trends in Cognitive Sciences, 20(7), 482–483. https://doi.org/10.1016/j.tics.2016.04.005.
Sui, J., Greenshaw, A. J., Macrae, C. N., & Cao, B. (2021). Self research: A new pathway to precision psychiatry. Journal of Affective Disorders, 293, 276–278. https://doi.org/10.1016/j.jad.2021.06.041.
Sui, J., He, X., & Humphreys, G. W. (2012). Perceptual effects of social salience: Evidence from self‐prioritization effects on perceptual matching. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1105.
Sui, J., & Humphreys, G. W. (2015a). More of me! Distinguishing self and reward bias using redundancy gains. Attention, Perception, and Psychophysics, 77(8), 2549–2561. https://doi.org/10.3758/s13414‐015‐0970‐x.
Sui, J., & Humphreys, G. W. (2015b). The integrative self: How self‐reference integrates perception and memory. Trends in Cognitive Sciences, 19(12), 719–728. https://doi.org/10.1016/j.tics.2015.08.015.
Sui, J., & Humphreys, G. W. (2017). The self survives extinction: Self‐association biases attention in patients with visual extinction. Cortex, 95, 248–256.
Sui, J., Sun, Y., Peng, K., & Humphreys, G. W. (2014). The automatic and the expected self: Separating self‐ and familiarity biases effects by manipulating stimulus probability. Attention, Perception, and Psychophysics, 76(4), 1176–1184. https://doi.org/10.3758/s13414‐014‐0631‐5.
Testolin, A., & McClelland, J. L. (2021). Do estimates of numerosity really adhere to Weber's law? A reexamination of two case studies. Psychonomic Bulletin and Review, 28(1), 158–168. https://doi.org/10.3758/s13423‐020‐01801‐z.
Trommershäuser, J., Körding, K. P., & Landy, M. S. (2012). Sensory cue integration. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195387247.001.0001.
van Bergen, R. S., & Jehee, J. F. M. (2019). Probabilistic representation in human visual cortex reflects uncertainty in serial decisions. Journal of Neuroscience, 39(41), 8164–8176. https://doi.org/10.1523/JNEUROSCI.3212‐18.2019.
Van Bergen, R. S., Ji Ma, W., Pratte, M. S., & Jehee, J. F. M. (2015). Sensory uncertainty decoded from visual cortex predicts behavior. Nature Neuroscience, 18(12), 1728–1730. https://doi.org/10.1038/nn.4150.
Verplanken, B., & Sui, J. (2019). Habit and identity: Behavioral, cognitive, affective, and motivational facets of an integrated self. Frontiers in Psychology, 10, 1504.
Wahn, B., Rohe, T., Gearhart, A., Kingstone, A., & Sinnett, S. (2020). Performing a task jointly enhances the sound‐induced flash illusion. Quarterly Journal of Experimental Psychology, 73(12), 2260–2271. https://doi.org/10.1177/1747021820942687.
Wang, A., Sang, H., He, J., Sava‐Segal, C., Tang, X., & Zhang, M. (2019). Effects of cognitive expectation on sound‐induced flash illusion. Perception, 48(12), 1214–1234. https://doi.org/10.1177/0301006619885796.
Woźniak, M., Kourtis, D., & Knoblich, G. (2018). Prioritization of arbitrary faces associated to self: An EEG study. PLoS One, 13(1), e0190679. https://doi.org/10.1371/journal.pone.0190679.
Wozny, D. R., Beierholm, U. R., & Shams, L. (2008). Human trimodal perception follows optimal statistical inference. Journal of Vision, 8(3), 24.1–24.11. https://doi.org/10.1167/8.3.24.
Zhang, Y., Wang, F., & Sui, J. (2023). Decoding individual differences in self‐prioritization from the resting‐state functional connectome. NeuroImage, 276, 120205. https://doi.org/10.1016/j.neuroimage.2023.120205.
معلومات مُعتمدة: RPG-2019-010 Leverhulme Trust
فهرسة مساهمة: Keywords: Bayes‐optimal percept; audio‐visual; multisensory integration; numerosity; priors; self‐prioritization; social relevance; sound‐induced flash illusion
تواريخ الأحداث: Date Created: 20230925 Date Completed: 20240415 Latest Revision: 20240415
رمز التحديث: 20240415
DOI: 10.1111/bjop.12683
PMID: 37747452
قاعدة البيانات: MEDLINE
الوصف
تدمد:2044-8295
DOI:10.1111/bjop.12683