دورية أكاديمية

Neuroprotective effects of riluzole in Alzheimer's disease: A comprehensive review.

التفاصيل البيبلوغرافية
العنوان: Neuroprotective effects of riluzole in Alzheimer's disease: A comprehensive review.
المؤلفون: Golmohammadi M; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran., Mahmoudian M; Department of Polymer Engineering, Amirkabir University of Technology, Tehran, Iran., Hasan EK; College of Pharmacy, Al-Bayan University, Baghdad, Iraq., Alshahrani SH; Medical Surgical Nursing Department, King Khalid University, Khamis Mushate, Saudi Arabia., Romero-Parra RM; Department of General Studies, Universidad Continental, Lima, Peru., Malviya J; Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India., Hjazi A; Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia., Najm MAA; Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq., Almulla AF; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq., Zamanian MY; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.; Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran., Kadkhodaei M; Department of Surgery, Lorestan University of Medical Sciences, Khorramabad, Iran., Mousavi N; Department of Psychology, Imam Khomeini International University, Qazvin, Iran.
المصدر: Fundamental & clinical pharmacology [Fundam Clin Pharmacol] 2024 Apr; Vol. 38 (2), pp. 225-237. Date of Electronic Publication: 2023 Sep 27.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Blackwell Science Country of Publication: England NLM ID: 8710411 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1472-8206 (Electronic) Linking ISSN: 07673981 NLM ISO Abbreviation: Fundam Clin Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: <2001->: Oxford : Blackwell Science
Original Publication: Paris ; New York : Elsevier, c1987-
مواضيع طبية MeSH: Neuroprotective Agents*/pharmacology , Neuroprotective Agents*/therapeutic use , Alzheimer Disease*/drug therapy , Alzheimer Disease*/metabolism, Child ; Humans ; Riluzole/pharmacology ; Riluzole/therapeutic use ; Excitatory Amino Acid Antagonists/pharmacology ; Excitatory Amino Acid Antagonists/therapeutic use ; Memantine/pharmacology ; Memantine/therapeutic use
مستخلص: Background: Despite several hundred clinical trials of drugs that initially showed promise, there has been limited clinical improvement in Alzheimer's disease (AD). This may be attributed to the existence of at least 25 abnormal cellular pathways that underlie the disease. It is improbable for a single drug to address all or most of these pathways, thus even drugs that show promise when administered alone are unlikely to produce significant results. According to previous studies, eight drugs, namely, dantrolene, erythropoietin, lithium, memantine, minocycline, piracetam, riluzole, and silymarin, have been found to target multiple pathways that are involved in the development of AD. Among these drugs, riluzole is currently indicated for the treatment of medical conditions in both adult patients and children and has gained increased attention from scientists due to its potential in the excitotoxic hypothesis of neurodegenerative diseases.
Objective: The aim of this study was to investigate the effects of drugs on AD based on cellular and molecular mechanisms.
Methods: The literature search for this study utilized the Scopus, ScienceDirect, PubMed, and Google Scholar databases to identify relevant articles.
Results: Riluzole exerts its effects in AD through diverse pathways including the inhibition of voltage-dependent sodium and calcium channels, blocking AMPA and NMDA receptors and inhibiting the release of glutamic acid release and stimulation of EAAT1-EAAT2.
Conclusion: In this review article, we aimed to review the neuroprotective properties of riluzole, a glutamate modulator, in AD, which could benefit patients with the disease.
(© 2023 Société Française de Pharmacologie et de Thérapeutique. Published by John Wiley & Sons Ltd.)
References: Xu Q-Q, Su Z-R, Yang W, Zhong M, Xian Y-F, Lin Z-X. Patchouli alcohol attenuates the cognitive deficits in a transgenic mouse model of Alzheimer's disease via modulating neuropathology and gut microbiota through suppressing C/EBPβ/AEP pathway. J Neuroinflammation. 2023;20(1):1-27.
Sultana N, Sharma N, Sharma KP, Verma S. A sequential ensemble model for communicable disease forecasting. Current Bioinformatics. 2020;15(4):309-317. doi:10.2174/1574893614666191202153824.
Rhodius-Meester HFM, Tijms BM, Lemstra AW, et al. Survival in memory clinic cohort is short, even in young-onset dementia. J Neurol Neurosurg Psychiatry. 2019;90(6):726-728. doi:10.1136/jnnp-2018-318820.
Wang Y, Liu X. The effective components, core targets, and key pathways of ginseng against Alzheimer's disease. Evid Based Complement Alternat Med. 2023;2023:9935942. doi:10.1155/2023/9935942.
van der Lee SJ, Wolters FJ, Ikram MK, et al. The effect of APOE and other common genetic variants on the onset of Alzheimer's disease and dementia: a community-based cohort study. Lancet Neurol. 2018;17(5):434-444. doi:10.1016/S1474-4422(18)30053-X.
Weidner WS, Barbarino P. P4-443: the state of the art of dementia research: new frontiers. Alzheimers Dement. 2019;15:P1473-P1473. doi:10.1016/j.jalz.2019.06.4115.
James BD, Bennett DA. Causes and patterns of dementia: an update in the era of redefining Alzheimer's disease. Annu Rev Public Health. 2019;40(1):65-84. doi:10.1146/annurev-publhealth-040218-043758.
Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer's disease. Nat Neurosci. 2020;23(10):1183-1193. doi:10.1038/s41593-020-0687-6.
Ju Y, Tam KY. Pathological mechanisms and therapeutic strategies for Alzheimer's disease. Neural Regen Res. 2022;17(3):543-549. doi:10.4103/1673-5374.320970.
Kazmi I, Al-Abbasi FA, Afzal M, Nadeem MS, Altayb HN. Sterubin protects against chemically-induced Alzheimer's disease by reducing biomarkers of inflammation-IL-6/IL-β/TNF-α and oxidative stress-SOD/MDA in rats. Saudi J Biolog Sci. 2023;30(2):103560. doi:10.1016/j.sjbs.2023.103560.
De Strooper B, Karran E. The cellular phase of Alzheimer's disease. Cell. 2016;164(4):603-615. doi:10.1016/j.cell.2015.12.056.
Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270-276. doi:10.1038/s41591-018-0297-y.
Gate D, Saligrama N, Leventhal O, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577(7790):399-404. doi:10.1038/s41586-019-1895-7.
Dodiya HB, Frith M, Sidebottom A, et al. Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer's transgenic mice. Sci Rep. 2020;10(1):8183. doi:10.1038/s41598-020-64797-5.
Bao W-D, Pang P, Zhou X-T, et al. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ. 2021;28(5):1548-1562. doi:10.1038/s41418-020-00685-9.
Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997;278(5337):412-419. doi:10.1126/science.278.5337.412.
Morrison JH, Hof PR. Selective vulnerability of corticocortical and hippocampal circuits in aging and Alzheimer's disease. Prog Brain Res. 2002;136:467-486. doi:10.1016/S0079-6123(02)36039-4.
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010;11(10):682-696. doi:10.1038/nrn2911.
Bellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther. 2011;17(1):4-31. doi:10.1111/j.1755-5949.2009.00116.x.
Pereira AC, Gray JD, Kogan JF, et al. Age and Alzheimer's disease gene expression profiles reversed by the glutamate modulator riluzole. Mol Psychiatry. 2017;22(2):296-305. doi:10.1038/mp.2016.33.
Trachtenberg JT, Chen BE, Knott GW, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002;420(6917):788-794. doi:10.1038/nature01273.
Pereira AC, Lambert HK, Grossman YS, et al. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering. Proc Natl Acad Sci. 2014;111(52):18733-18738. doi:10.1073/pnas.1421285111.
Yang Y, Ji W-g, Zhang Y-j, et al. Riluzole ameliorates soluble Aβ1-42-induced impairments in spatial memory by modulating the glutamatergic/GABAergic balance in the dentate gyrus. Prog Neuro-Psychopharmacol Biol Psych. 2021;108:110077. doi:10.1016/j.pnpbp.2020.110077.
Okamoto M, Gray JD, Larson CS, et al. Riluzole reduces amyloid beta pathology, improves memory, and restores gene expression changes in a transgenic mouse model of early-onset Alzheimer's disease. Transl Psychiatry. 2018;8(1):153. doi:10.1038/s41398-018-0201-z.
Hunsberger HC, Weitzner DS, Rudy CC, et al. Riluzole rescues glutamate alterations, cognitive deficits, and tau pathology associated with P301L tau expression. J Neurochem. 2015;135(2):381-394. doi:10.1111/jnc.13230.
Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012;2012(3):CD001447. doi:10.1002/14651858.CD001447.pub3.
Cheah B, Vucic S, Krishnan A, Kiernan M. Riluzole, neuroprotection and amyotrophic lateral sclerosis. Curr Med Chem. 2010;17(18):1942-1959. doi:10.2174/092986710791163939.
Cifra A, Mazzone GL, Nistri A. Riluzole: what it does to spinal and brainstem neurons and how it does it. Neuroscientist. 2013;19(2):137-144. doi:10.1177/1073858412444932.
Qureshi I, Lovegren M, Wirtz V, et al. A pharmacokinetic bioequivalence study comparing sublingual riluzole (BHV-0223) and oral tablet formulation of riluzole in healthy volunteers. Clin Pharmacol Drug Dev. 2020;9(4):476-485. doi:10.1002/cpdd.747.
Le Liboux A, Lefebvre P, Le Roux Y, et al. Single- and multiple-dose pharmacokinetics of riluzole in white subjects. J Clin Pharmacol. 1997;37(9):820-827. doi:10.1002/j.1552-4604.1997.tb05630.x.
Sanderink GJ, Bournique B, Stevens J, Petry M, Martinet M. Involvement of human CYP1A isoenzymes in the metabolism and drug interactions of riluzole in vitro. J Pharmacol Exp Ther. 1997;282(3):1465-1472.
Malgouris C, Bardot F, Daniel M, et al. Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. J Neurosci. 1989;9(11):3720-3727. doi:10.1523/JNEUROSCI.09-11-03720.1989.
Mizoule J, Meldrum B, Mazadier M, et al. 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission-I: anticonvulsant properties. Neuropharmacology. 1985;24(8):767-773. doi:10.1016/0028-3908(85)90011-5.
Grossman RG, Fehlings MG, Frankowski RF, et al. A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma. 2014;31(3):239-255. doi:10.1089/neu.2013.2969.
Stefan H, Feuerstein TJ. Novel anticonvulsant drugs. Pharmacol Ther. 2007;113(1):165-183. doi:10.1016/j.pharmthera.2006.07.005.
Benavides J, Camelin JC, Mitrani N, et al. 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission-II. Biochemical properties. Neuropharmacology. 1985;24(11):1085-1092. doi:10.1016/0028-3908(85)90196-0.
Bissaro M, Moro S. Rethinking to riluzole mechanism of action: the molecular link among protein kinase CK1δ activity, TDP-43 phosphorylation, and amyotrophic lateral sclerosis pharmacological treatment. Neural Regen Res. 2019;14(12):2083-2085. doi:10.4103/1673-5374.262578.
Ristori G, Romano S, Visconti A, et al. Riluzole in cerebellar ataxia: a randomized, double-blind, placebo-controlled pilot trial. Neurology. 2010;74(10):839-845. doi:10.1212/WNL.0b013e3181d31e23.
Ates O, Cayli SR, Gurses I, et al. Comparative neuroprotective effect of sodium channel blockers after experimental spinal cord injury. J Clin Neurosci. 2007;14(7):658-665. doi:10.1016/j.jocn.2006.03.023.
Kyllo T, Singh V, Shim H, et al. Riluzole and novel naphthalenyl substituted aminothiazole derivatives prevent acute neural excitotoxic injury in a rat model of temporal lobe epilepsy. Neuropharmacology. 2023;224:109349. doi:10.1016/j.neuropharm.2022.109349.
Lips J, de Haan P, Bodewits P, et al. Neuroprotective effects of riluzole and ketamine during transient spinal cord ischemia in the rabbit. J Am Dent Soc Anesthesiol. 2000;93(5):1303-1311. doi:10.1097/00000542-200011000-00025.
Hama A, Sagen J. Antinociceptive effect of riluzole in rats with neuropathic spinal cord injury pain. J Neurotrauma. 2011;28(1):127-134. doi:10.1089/neu.2010.1539.
川野千尋, 磯﨑友理香, 中川歩美, 平山武司, 西山和利, 黒山政一. Liver injury risk factors in amyotrophic lateral sclerosis patients treated with riluzole. Yakugaku Zasshi. 2020;140(7):923-928. doi:10.1248/yakushi.20-00015.
Squitieri F, Orobello S, Cannella M, et al. Riluzole protects Huntington disease patients from brain glucose hypometabolism and grey matter volume loss and increases production of neurotrophins. Eur J Nucl Med Mol Imaging. 2009;36(7):1113-1120. doi:10.1007/s00259-009-1103-3.
Wu Y, Satkunendrarajah K, Teng Y, Chow DS-L, Buttigieg J, Fehlings MG. Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J Neurotrauma. 2013;30(6):441-452. doi:10.1089/neu.2012.2622.
Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133-150. doi:10.1038/nrneurol.2017.188.
Akhtar A, Andleeb A, Waris TS, et al. Neurodegenerative diseases and effective drug delivery: a review of challenges and novel therapeutics. J Control Release. 2021;330:1152-1167. doi:10.1016/j.jconrel.2020.11.021.
Parikh RH, Patel RJ. Nanoemulsions for intranasal delivery of riluzole to improve brain bioavailability: formulation development and pharmacokinetic studies. Curr Drug Deliv. 2016;13(7):1130-1143. doi:10.2174/1567201813666151202195729.
Patel RJ, Patel AA, Patel HP. Stabilized amorphous state of riluzole by immersion-rotavapor method with synthesized mesoporous SBA-15 carrier to augment in-vitro dissolution. J Drug Del Sci Technol. 2021;61:102270. doi:10.1016/j.jddst.2020.102270.
Bondì ML, Craparo EF, Giammona G, Drago F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond). 2010;5(1):25-32. doi:10.2217/nnm.09.67.
Narendar C, Tharani M, Rao GN, Raj MA, Justin A. Combination of riluzole and rivastigmine-a potential treatment strategy for Alzheimer's disease. J Popul Ther Clin Pharmacol. 2023;30(4):316-327.
Graf M, Ecker D, Horowski R, et al. High dose vitamin E therapy in amyotrophic lateral sclerosis as add-on therapy to riluzole: results of a placebo-controlled double-blind study. J Neural Transm. 2005;112(5):649-660. doi:10.1007/s00702-004-0220-1.
Waibel S, Reuter A, Malessa S, Blaugrund E, Ludolph AC. Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model. J Neurol. 2004;251(9):1080-1084. doi:10.1007/s00415-004-0481-5.
Cai M, Yang EJ. Combined treatment with Bojungikgi-tang and riluzole regulates muscle metabolism and dysfunction in the hSOD1G93A mouse model. Antioxidants. 2022;11(3):579. doi:10.3390/antiox11030579.
Hansen KB, Yi F, Perszyk RE, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol. 2018;150(8):1081-1105. doi:10.1085/jgp.201812032.
Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer's disease. Alzheimers Dement. 2018;14(10):1302-1312. doi:10.1016/j.jalz.2018.05.017.
Yabuki Y, Matsuo K, Hirano K, Shinoda Y, Moriguchi S, Fukunaga K. Combined memantine and donepezil treatment improves behavioral and psychological symptoms of dementia-like behaviors in olfactory bulbectomized mice. Pharmacology. 2017;99(3-4):160-171. doi:10.1159/000452839.
Francis PT, Parsons CG, Jones RW. Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer's disease. Expert Rev Neurother. 2012;12(11):1351-1365. doi:10.1586/ern.12.124.
Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol. 2008;578(2-3):171-176. doi:10.1016/j.ejphar.2007.10.023.
Frizzo ME, Dall'onder LP, Dalcin KB, Souza DO. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol. 2004;24(1):123-128. doi:10.1023/B:CEMN.0000012717.37839.07.
Azbill RD, Mu X, Springer JE. Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res. 2000;871(2):175-180. doi:10.1016/S0006-8993(00)02430-6.
Groeneveld GJ, van Kan HJ, Lie-A-Huen L, Guchelaar HJ, van den Berg LH. An association study of riluzole serum concentration and survival and disease progression in patients with ALS. Clin Pharmacol Ther. 2008;83(5):718-722. doi:10.1038/sj.clpt.6100382.
Colovic M, Zennaro E, Caccia S. Liquid chromatographic assay for riluzole in mouse plasma and central nervous system tissues. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;803(2):305-309. doi:10.1016/j.jchromb.2004.01.004.
Milane A, Tortolano L, Fernandez C, Bensimon G, Meininger V, Farinotti R. Brain and plasma riluzole pharmacokinetics: effect of minocycline combination. J Pharm Pharm Sci. 2009;12(2):209-217. doi:10.18433/J36C78.
Doble A. The pharmacology and mechanism of action of riluzole. Neurology. 1996;47(Issue 6, Supplement 4):233S-241S. doi:10.1212/WNL.47.6_Suppl_4.233S.
Gouras GK, Almeida CG, Takahashi RH. Intraneuronal Aβ accumulation and origin of plaques in Alzheimer's disease. Neurobiol Aging. 2005;26(9):1235-1244. doi:10.1016/j.neurobiolaging.2005.05.022.
Selkoe DJ. Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. J Alzheimer's Dis: JAD. 2001;3(1):75-80. doi:10.3233/JAD-2001-3111.
Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52(4):601-623. doi:10.1373/clinchem.2005.061408.
Desler C, Lillenes MS, Tønjum T, Rasmussen LJ. The role of mitochondrial dysfunction in the progression of Alzheimer's disease. Curr Med Chem. 2018;25(40):5578-5587. doi:10.2174/0929867324666170616110111.
Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide. Trends Mol Med. 2001;7(12):548-554. doi:10.1016/S1471-4914(01)02173-6.
Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73-82. doi:10.1080/01616412.2016.1251711.
Fessel WJ. Concordance of several subcellular interactions initiates Alzheimer's dementia: their reversal requires combination treatment. Am J Alzheimers Dis Other Demen. 2017;32(3):166-181. doi:10.1177/1533317517698790.
Fessel J. Prevention of Alzheimer's disease by treating mild cognitive impairment with combinations chosen from eight available drugs. Alzheimer's Dementia (New York, N Y). 2019;5(1):780-788. doi:10.1016/j.trci.2019.09.019.
Borowicz KK, Sekowski A, Drelewska E, Czuczwar SJ. Riluzole enhances the antiseizure action of conventional antiepileptic drugs against pentetrazole-induced convulsions in mice. Pol J Pharmacol. 2004;56(2):187-193.
McIntosh TK, Smith DH, Voddi M, Perri BR, Stutzmann JM. Riluzole, a novel neuroprotective agent, attenuates both neurologic motor and cognitive dysfunction following experimental brain injury in the rat. J Neurotrauma. 1996;13(12):767-780. doi:10.1089/neu.1996.13.767.
Rinwa P, Jaggi AS, Singh N. Pharmacological investigation of memory restorative effect of riluzole in mice. Indian J Pharm. 2012;44(3):366-371. doi:10.4103/0253-7613.96337.
Yoshida M, Noguchi E, Tsuru N, Ohkoshi N. Effect of riluzole on the acquisition and expression of amygdala kindling. Epilepsy Res. 2001;46(2):101-109. doi:10.1016/S0920-1211(01)00251-0.
Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Riluzole: a therapeutic strategy in Alzheimer's disease by targeting the WNT/β-catenin pathway. Aging. 2020;12(3):3095-3113. doi:10.18632/aging.102830.
Furuta A, Rothstein JD, Martin LJ. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J Neurosci. 1997;17(21):8363-8375. doi:10.1523/JNEUROSCI.17-21-08363.1997.
Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 2007;8(12):935-947. doi:10.1038/nrn2274.
Lin CL, Kong Q, Cuny GD, Glicksman MA. Glutamate transporter EAAT2: a new target for the treatment of neurodegenerative diseases. Future Med Chem. 2012;4(13):1689-1700. doi:10.4155/fmc.12.122.
Potier B, Billard JM, Rivière S, et al. Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell. 2010;9(5):722-735. doi:10.1111/j.1474-9726.2010.00593.x.
Brothers HM, Bardou I, Hopp SC, et al. Riluzole partially rescues age-associated, but not LPS-induced, loss of glutamate transporters and spatial memory. J Neuroimmune Pharmacol. 2013;8(5):1098-1105. doi:10.1007/s11481-013-9476-2.
Jacob C, Koutsilieri E, Bartl J, et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer's disease. J Alzheimers Dis. 2007;11(1):97-116. doi:10.3233/JAD-2007-11113.
Masliah E, Hansen L, Alford M, Deteresa R, Mallory M. Deficient glutamate tranport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol. 1996;40(5):759-766. doi:10.1002/ana.410400512.
Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer's disease: therapeutic implications. CNS Drugs. 2003;17(9):641-652. doi:10.2165/00023210-200317090-00004.
Francis PT. Glutamatergic systems in Alzheimer's disease. Int J Geriatr Psychiatry. 2003;18(S1):S15-S21. doi:10.1002/gps.934.
Hascup ER, Broderick SO, Russell MK, et al. Diet-induced insulin resistance elevates hippocampal glutamate as well as VGLUT 1 and GFAP expression in Aβ PP/PS 1 mice. J Neurochem. 2019;148(2):219-237. doi:10.1111/jnc.14634.
Hascup KN, Findley CA, Britz J, et al. Riluzole attenuates glutamatergic tone and cognitive decline in AβPP/PS1 mice. J Neurochem. 2021;156(4):513-523. doi:10.1111/jnc.15224.
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101-112. doi:10.1038/nrm2101.
Kessels HW, Nabavi S, Malinow R. Metabotropic NMDA receptor function is required for β-amyloid-induced synaptic depression. Proc Natl Acad Sci U S A. 2013;110(10):4033-4038. doi:10.1073/pnas.1219605110.
Hardingham GE. Pro-Survival Signalling From the NMDA Receptor. Vol. 34. Portland Press Ltd.; 2006:936-938. doi:10.1042/BST0340936.
Rusakov DA, Kullmann DM. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J Neurosci. 1998;18(9):3158-3170. doi:10.1523/JNEUROSCI.18-09-03158.1998.
Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 2011;31(18):6627-6638. doi:10.1523/JNEUROSCI.0203-11.2011.
Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci. 2005;8(8):1051-1058. doi:10.1038/nn1503.
Kamenetz F, Tomita T, Hsieh H, et al. APP processing and synaptic function. Neuron. 2003;37(6):925-937. doi:10.1016/S0896-6273(03)00124-7.
Kavalali ET, Klingauf J, Tsien RW. Activity-dependent regulation of synaptic clustering in a hippocampal culture system. Proc Natl Acad Sci. 1999;96(22):12893-12900. doi:10.1073/pnas.96.22.12893.
Kleindienst T, Winnubst J, Roth-Alpermann C, Bonhoeffer T, Lohmann C. Activity-dependent clustering of functional synaptic inputs on developing hippocampal dendrites. Neuron. 2011;72(6):1012-1024. doi:10.1016/j.neuron.2011.10.015.
De Roo M, Klauser P, Muller D. LTP promotes a selective long-term stabilization and clustering of dendritic spines. PLoS Biol. 2008;6(9):e219. doi:10.1371/journal.pbio.0060219.
Huang YH, Bergles DE. Glutamate transporters bring competition to the synapse. Curr Opin Neurobiol. 2004;14(3):346-352. doi:10.1016/j.conb.2004.05.007.
Banasr M, Chowdhury GM, Terwilliger R, et al. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol Psychiatry. 2010;15(5):501-511. doi:10.1038/mp.2008.106.
Gourley SL, Espitia JW, Sanacora G, Taylor JR. Antidepressant-like properties of oral riluzole and utility of incentive disengagement models of depression in mice. Psychopharmacology (Berl). 2012;219(3):805-814. doi:10.1007/s00213-011-2403-4.
Gulyaeva NV. Hippocampal hyperglutamatergic signaling matters: early targeting glutamate neurotransmission as a preventive strategy in Alzheimer's disease: an editorial highlight for “Riluzole attenuates glutamatergic tone and cognitive decline in AβPP/PS1 mice” on page 513. J Neurochem. 2021;156(4):399-402. doi:10.1111/jnc.15238.
Lesuis SL, Kaplick PM, Lucassen PJ, Krugers HJ. Treatment with the glutamate modulator riluzole prevents early life stress-induced cognitive deficits and impairments in synaptic plasticity in APPswe/PS1dE9 mice. Neuropharmacology. 2019;150:175-183. doi:10.1016/j.neuropharm.2019.02.023.
Godoy JA, Rios JA, Zolezzi JM, Braidy N, Inestrosa NC. Signaling pathway cross talk in Alzheimer's disease. Cell Commun Signal. 2014;12(1):23. doi:10.1186/1478-811X-12-23.
Strekalova T, Zörner B, Zacher C, Sadovska G, Herdegen T, Gass P. Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus. Genes Brain Behav. 2003;2(1):3-10. doi:10.1034/j.1601-183X.2003.00001.x.
Geiller T, Priestley JB, Losonczy A. A local circuit-basis for spatial navigation and memory processes in hippocampal area CA1. Curr Opin Neurobiol. 2023;79:102701. doi:10.1016/j.conb.2023.102701.
Ren S-C, Shao H, Ji W-G, et al. Riluzole prevents soluble a β 1-42 oligomers-induced perturbation of spontaneous discharge in the hippocampal CA1 region of rats. Amyloid. 2015;22(1):36-44. doi:10.3109/13506129.2014.990558.
Mokhtari Z, Baluchnejadmojarad T, Nikbakht F, Mansouri M, Roghani M. Riluzole ameliorates learning and memory deficits in Aβ25-35-induced rat model of Alzheimer's disease and is independent of cholinoceptor activation. Biomed Pharmacother. 2017;87:135-144. doi:10.1016/j.biopha.2016.12.067.
Saba K, Patel AB. Riluzole restores memory and brain energy metabolism in AβPP-PS1 mouse model of Alzheimer's disease. Biochem Biophys Res Commun. 2022;610:140-146. doi:10.1016/j.bbrc.2022.04.051.
Liu L, Drouet V, Wu JW, et al. Trans-synaptic spread of tau pathology in vivo. PLoS ONE. 2012;7(2):e31302. doi:10.1371/journal.pone.0031302.
Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev. 2004;84(2):361-384. doi:10.1152/physrev.00024.2003.
Cook C, Stankowski JN, Carlomagno Y, Stetler C, Petrucelli L. Acetylation: a new key to unlock tau's role in neurodegeneration. Alzheimer's Res Ther. 2014;6(3):1-8. doi:10.1186/alzrt259.
Gustke N, Steiner B, Mandelkow E-M, et al. The Alzheimer-like phosphorylation of tau protein reduces microtubule binding and involves Ser-Pro and Thr-Pro motifs. FEBS Lett. 1992;307(2):199-205. doi:10.1016/0014-5793(92)80767-B.
Gorantla NV, Chinnathambi S. Tau protein squired by molecular chaperones during Alzheimer's disease. J Mol Neurosci. 2018;66(3):356-368. doi:10.1007/s12031-018-1174-3.
Dregni AJ, Wang HK, Wu H, et al. Inclusion of the C-terminal domain in the β-sheet core of heparin-fibrillized three-repeat tau protein revealed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc. 2021;143(20):7839-7851. doi:10.1021/jacs.1c03314.
Mandelkow E-M, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med. 2012;2(7):a006247. doi:10.1101/cshperspect.a006247.
Cleveland DW, Hwo S-Y, Kirschner MW. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol. 1977;116(2):227-247. doi:10.1016/0022-2836(77)90214-5.
Ma C, Hong F, Yang S. Amyloidosis in Alzheimer's disease: pathogeny, etiology, and related therapeutic directions. Molecules. 2022;27(4):1210. doi:10.3390/molecules27041210.
Basheera S, Sai Ram MS. Convolution neural network-based Alzheimer's disease classification using hybrid enhanced independent component analysis based segmented gray matter of T2 weighted magnetic resonance imaging with clinical valuation. Alzheimer's Dementia: Transl Res Clin Intervent. 2019;5(1):974-986. doi:10.1016/j.trci.2019.10.001.
Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A. Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer's disease. Neurosci Res. 2006;54(3):197-201. doi:10.1016/j.neures.2005.11.009.
Hunsberger HC, Rudy CC, Batten SR, Gerhardt GA, Reed MN. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway. J Neurochem. 2015;132(2):169-182. doi:10.1111/jnc.12967.
Yamada K, Holth JK, Liao F, et al. Neuronal activity regulates extracellular tau in vivo. J Exp Med. 2014;211(3):387-393. doi:10.1084/jem.20131685.
Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013;14(4):389-394. doi:10.1038/embor.2013.15.
Hunsberger HC, Hickman JE, Reed MN. Riluzole rescues alterations in rapid glutamate transients in the hippocampus of rTg4510 mice. Metab Brain Dis. 2016;31(3):711-715. doi:10.1007/s11011-015-9783-9.
Yan Z, Feng J. Alzheimer's disease: interactions between cholinergic functions and β-amyloid. Curr Alzheimer Res. 2004;1(4):241-248. doi:10.2174/1567205043331992.
Chintha N, Jupudi S, Palathoti N, Bharathi JJ, Justin A. In-silico docking and molecular dynamic introspective study of multiple targets of AChE with rivastigmine and NMDA receptors with riluzole for Alzheimer's disease. J Biomol Struct Dyn. 2023;1-12. doi:10.1080/07391102.2023.2167119.
Grutzendler J, Kasthuri N, Gan W-B. Long-term dendritic spine stability in the adult cortex. Nature. 2002;420(6917):812-816. doi:10.1038/nature01276.
Larkum ME, Nevian T. Synaptic clustering by dendritic signalling mechanisms. Curr Opin Neurobiol. 2008;18(3):321-331. doi:10.1016/j.conb.2008.08.013.
Polsky A, Mel BW, Schiller J. Computational subunits in thin dendrites of pyramidal cells. Nat Neurosci. 2004;7(6):621-627. doi:10.1038/nn1253.
Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease. Aging Dis. 2015;6(2):131-148. doi:10.14336/AD.2014.0423.
Matthews DC, Mao X, Dowd K, et al. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer's disease. Brain. 2021;144(12):3742-3755. doi:10.1093/brain/awab222.
فهرسة مساهمة: Keywords: Alzheimer's disease; amyloid beta; glutamic acid; neuroprotection; riluzole
المشرفين على المادة: 7LJ087RS6F (Riluzole)
0 (Neuroprotective Agents)
0 (Excitatory Amino Acid Antagonists)
W8O17SJF3T (Memantine)
تواريخ الأحداث: Date Created: 20230927 Date Completed: 20240313 Latest Revision: 20240313
رمز التحديث: 20240313
DOI: 10.1111/fcp.12955
PMID: 37753585
قاعدة البيانات: MEDLINE
الوصف
تدمد:1472-8206
DOI:10.1111/fcp.12955