دورية أكاديمية

Glycolytic shift during West Nile virus infection provides new therapeutic opportunities.

التفاصيل البيبلوغرافية
العنوان: Glycolytic shift during West Nile virus infection provides new therapeutic opportunities.
المؤلفون: Mingo-Casas P; Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain., Blázquez AB; Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain., Gómez de Cedrón M; Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain., San-Félix A; Instituto de Quimica Medica (IQM), CSIC, 28006, Madrid, Spain., Molina S; Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain., Escribano-Romero E; Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain., Calvo-Pinilla E; Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain., Jiménez de Oya N; Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain., Ramírez de Molina A; Molecular Oncology Group, IMDEA Food Institute, CEI UAM + CSIC, 28049, Madrid, Spain., Saiz JC; Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain., Pérez-Pérez MJ; Instituto de Quimica Medica (IQM), CSIC, 28006, Madrid, Spain., Martín-Acebes MA; Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040, Madrid, Spain. martin.mangel@inia.csic.es.
المصدر: Journal of neuroinflammation [J Neuroinflammation] 2023 Sep 27; Vol. 20 (1), pp. 217. Date of Electronic Publication: 2023 Sep 27.
نوع المنشور: Meta-Analysis; Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101222974 Publication Model: Electronic Cited Medium: Internet ISSN: 1742-2094 (Electronic) Linking ISSN: 17422094 NLM ISO Abbreviation: J Neuroinflammation Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : BioMed Central, c2004-
مواضيع طبية MeSH: West Nile Fever*, Humans ; Animals ; Mice ; Glycolysis ; Central Nervous System ; Disease Outbreaks ; Gene Expression Profiling
مستخلص: Background: Viral rewiring of host bioenergetics and immunometabolism may provide novel targets for therapeutic interventions against viral infections. Here, we have explored the effect on bioenergetics during the infection with the mosquito-borne flavivirus West Nile virus (WNV), a medically relevant neurotropic pathogen causing outbreaks of meningitis and encephalitis worldwide.
Results: A systematic literature search and meta-analysis pointed to a misbalance of glucose homeostasis in the central nervous system of WNV patients. Real-time bioenergetic analyses confirmed upregulation of aerobic glycolysis and a reduction of mitochondrial oxidative phosphorylation during viral replication in cultured cells. Transcriptomics analyses in neural tissues from experimentally infected mice unveiled a glycolytic shift including the upregulation of hexokinases 2 and 3 (Hk2 and Hk3) and pyruvate dehydrogenase kinase 4 (Pdk4). Treatment of infected mice with the Hk inhibitor, 2-deoxy-D-glucose, or the Pdk4 inhibitor, dichloroacetate, alleviated WNV-induced neuroinflammation.
Conclusions: These results highlight the importance of host energetic metabolism and specifically glycolysis in WNV infection in vivo. This study provides proof of concept for the druggability of the glycolytic pathway for the future development of therapies to combat WNV pathology.
(© 2023. BioMed Central Ltd., part of Springer Nature.)
References: Purbey PK, Roy K, Gupta S, Paul MK. Mechanistic insight into the protective and pathogenic immune-responses against SARS-CoV-2. Mol Immunol. 2023;156:111–26. (PMID: 3692148610009586)
Barzon L. Ongoing and emerging arbovirus threats in Europe. J Clin Virol. 2018;107:38–47. (PMID: 30176404)
Musso D, Rodriguez-Morales AJ, Levi JE, Cao-Lormeau VM, Gubler DJ. Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America. Lancet Infect Dis. 2018;18:e355–61. (PMID: 29934112)
Saiz JC, Martin-Acebes MA, Blazquez AB, Escribano-Romero E, Poderoso T, de Jimenez N. Pathogenicity and virulence of West Nile virus revisited eight decades after its first isolation. Virulence. 2021;12:1145–73. (PMID: 338434458043182)
Jordan TX, Randall G. Flavivirus modulation of cellular metabolism. Curr Opin Virol. 2016;19:7–10. (PMID: 272803835021554)
Palsson-McDermott EM, O’Neill LAJ. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 2020;30:300–14. (PMID: 321326727118080)
Levy HB, Baron S. The effect of animal viruses on host cell metabolism. II. Effect of poliomyelitis virus on glycolysis and uptake of glycine by monkey kidney tissue cultures. J Infect Dis. 1957;100:109–18. (PMID: 13416643)
Fontaine KA, Sanchez EL, Camarda R, Lagunoff M. Dengue virus induces and requires glycolysis for optimal replication. J Virol. 2015;89:2358–66. (PMID: 25505078)
Wald ME, Sieg M, Schilling E, Binder M, Vahlenkamp TW, Claus C. The interferon response dampens the usutu virus infection-associated increase in glycolysis. Front Cell Infect Microbiol. 2022;12: 823181. (PMID: 351867968855070)
Yau C, Low JZH, Gan ES, Kwek SS, Cui L, Tan HC, Mok DZL, Chan CYY, Sessions OM, Watanabe S, et al. Dysregulated metabolism underpins Zika-virus-infection-associated impairment in fetal development. Cell Rep. 2021;37: 110118. (PMID: 34910902)
Li M, Yang J, Ye C, Bian P, Yang X, Zhang H, Luo C, Xue Z, Lei Y, Lian J. Integrated metabolomics and transcriptomics analyses reveal metabolic landscape in neuronal cells during JEV infection. Virol Sin. 2021;36:1554–65. (PMID: 345580148692526)
Zhao Q, Yu Z, Zhang S, Shen XR, Yang H, Xu Y, Liu Y, Yang L, Zhang Q, Chen J, et al. Metabolic modeling of single bronchoalveolar macrophages reveals regulators of hyperinflammation in COVID-19. iScience. 2022;25:105319. (PMID: 362465779549388)
Pastorino B, Boucomont-Chapeaublanc E, Peyrefitte CN, Belghazi M, Fusai T, Rogier C, Tolou HJ, Almeras L. Identification of cellular proteome modifications in response to West Nile virus infection. Mol Cell Proteomics. 2009;8:1623–37. (PMID: 193957072709190)
Martin-Acebes MA, Blazquez AB, Canas-Arranz R, Vazquez-Calvo A, Merino-Ramos T, Escribano-Romero E, Sobrino F, Saiz JC. A recombinant DNA vaccine protects mice deficient in the alpha/beta interferon receptor against lethal challenge with Usutu virus. Vaccine. 2016;34:2066–73. (PMID: 26993334)
Martin-Acebes MA, Blazquez AB, de Jimenez Oya N, Escribano-Romero E, Saiz JC. West Nile virus replication requires fatty acid synthesis but is independent on phosphatidylinositol-4-phosphate lipids. PLoS ONE. 2011;6: e24970. (PMID: 219498143176790)
Martin-Acebes MA, Saiz JC. A West Nile virus mutant with increased resistance to acid-induced inactivation. J Gen Virol. 2011;92:831–40. (PMID: 21228127)
Blazquez AB, Martin-Acebes MA, Poderoso T, Saiz JC. Relevance of oxidative stress in inhibition of eIF2 alpha phosphorylation and stress granules formation during Usutu virus infection. PLoS Negl Trop Dis. 2021;15: e0009072. (PMID: 334932027861526)
Gomez de Cedron M, Vargas T, Madrona A, Jimenez A, Perez-Perez MJ, Quintela JC, Reglero G, San-Felix A, Ramirez de Molina A. Novel polyphenols that inhibit colon cancer cell growth affecting cancer cell metabolism. J Pharmacol Exp Ther. 2018;366:377–89. (PMID: 29871992)
Pierson TC, Sanchez MD, Puffer BA, Ahmed AA, Geiss BJ, Valentine LE, Altamura LA, Diamond MS, Doms RW. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology. 2006;346:53–65. (PMID: 16325883)
Jimenez de Oya N, San-Felix A, Casasampere M, Blazquez AB, Mingo-Casas P, Escribano-Romero E, Calvo-Pinilla E, Poderoso T, Casas J, Saiz JC, et al. Pharmacological elevation of cellular dihydrosphingomyelin provides a novel antiviral strategy against West Nile virus infection. Antimicrob Agents Chemother. 2023;67: e0168722. (PMID: 36920206)
Reguero M, Gomez de Cedron M, Reglero G, Quintela JC, Ramirez de Molina A. Natural extracts to augment energy expenditure as a complementary approach to tackle obesity and associated metabolic alterations. Biomolecules. 2021;11:412. (PMID: 338021737999034)
Pecci L, Fontana M, Montefoschi G, Cavallini D. Aminoethylcysteine ketimine decarboxylated dimer protects submitochondrial particles from lipid peroxidation at a concentration not inhibitory of electron transport. Biochem Biophys Res Commun. 1994;205:264–8. (PMID: 7999034)
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. (PMID: 246954044103590)
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. (PMID: 192611742690996)
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15. (PMID: 313758077605509)
Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, Pertea M. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:278. (PMID: 318429566912988)
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. (PMID: 255162814302049)
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50. (PMID: 161995171239896)
Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73. (PMID: 12808457)
Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25. (PMID: 267710214707969)
Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, Griss J, Sevilla C, Matthews L, Gong C, et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–92. (PMID: 34788843)
Merino-Ramos T, Vazquez-Calvo A, Casas J, Sobrino F, Saiz JC, Martin-Acebes MA. Modification of the host cell lipid metabolism induced by hypolipidemic drugs targeting the acetyl coenzyme A carboxylase impairs West Nile virus replication. Antimicrob Agents Chemother. 2016;60:307–15. (PMID: 26503654)
Mingo-Casas P, Sanchez-Cespedes J, Blazquez AB, Casas J, Balsera-Manzanero M, Herrero L, Vazquez A, Pachon J, Aguilar-Guisado M, Cisneros JM, et al. Lipid signatures of West Nile virus infection unveil alterations of sphingolipid metabolism providing novel biomarkers. Emerg Microbes Infect. 2023;12:2231556. (PMID: 3737735510337513)
Roos K. Principles of neurologic infectious diseases. New York: McGraw-Hill, Medical Pub. Division; 2005. p. 4.
Klein C, Kimiagar I, Pollak L, Gandelman-Marton R, Itzhaki A, Milo R, Rabey JM. Neurological features of West Nile virus infection during the 2000 outbreak in a regional hospital in Israel. J Neurol Sci. 2002;200:63–6. (PMID: 12127678)
Bakos I, Mahdi M, Kardos L, Nagy A, Varkonyi I. Clinical spectrum and CSF findings in patients with West-Nile virus infection, a retrospective cohort review. Diagnostics (Basel). 2022;12:805. (PMID: 354538539032281)
Burden Z, Fasen M, Judkins BL, Isache C. A case of West Nile virus encephalitis accompanied by diabetic ketoacidosis and rhabdomyolysis. IDCases. 2019;15: e00505. (PMID: 308153606378900)
Mundt LA, Shanahan K. Graff’s textbook of routine urinalysis and body fluids. Burlington: Jones & Bartlett Learning; 2010. p. 237.
McGruder B, Saxena V, Wang T. Lessons from the murine models of West Nile virus infection. Methods Mol Biol. 2016;1435:61–9. (PMID: 27188550)
Spiteri AG, Wishart CL, Ni D, Viengkhou B, Macia L, Hofer MJ, King NJC. Temporal tracking of microglial and monocyte single-cell transcriptomics in lethal flavivirus infection. Acta Neuropathol Commun. 2023;11:60. (PMID: 3701641410074823)
Tan Z, Xie N, Banerjee S, Cui H, Fu M, Thannickal VJ, Liu G. The monocarboxylate transporter 4 is required for glycolytic reprogramming and inflammatory response in macrophages. J Biol Chem. 2015;290:46–55. (PMID: 25406319)
Zhang S, Hulver MW, McMillan RP, Cline MA, Gilbert ER. The pivotal role of pyruvate dehydrogenase kinases in metabolic flexibility. Nutr Metab (Lond). 2014;11:10. (PMID: 24520982)
Cheng CC, Wooten J, Gibbs ZA, McGlynn K, Mishra P, Whitehurst AW. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. Elife. 2020;9: e58108. (PMID: 329905997556868)
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34:11929–47. (PMID: 251867414152602)
Thammahakin P, Maezono K, Maekawa N, Kariwa H, Kobayashi S. Detection of disease-associated microglia among various microglia phenotypes induced by West Nile virus infection in mice. J Neurovirol. 2023. https://doi.org/10.1007/s13365-023-01161-z . (PMID: 10.1007/s13365-023-01161-z37552415)
Spiteri AG, van Vreden C, Ashhurst TM, Niewold P, King NJC. Clodronate is not protective in lethal viral encephalitis despite substantially reducing inflammatory monocyte infiltration in the CNS. Front Immunol. 2023;14:1203561. (PMID: 3754551110403146)
Kelley TW, Prayson RA, Ruiz AI, Isada CM, Gordon SM. The neuropathology of West Nile virus meningoencephalitis. A report of two cases and review of the literature. Am J Clin Pathol. 2003;119:749–53. (PMID: 12760295)
Huang CC, Wang SY, Lin LL, Wang PW, Chen TY, Hsu WM, Lin TK, Liou CW, Chuang JH. Glycolytic inhibitor 2-deoxyglucose simultaneously targets cancer and endothelial cells to suppress neuroblastoma growth in mice. Dis Model Mech. 2015;8:1247–54. (PMID: 263989474610240)
Mainali R, Zabalawi M, Long D, Buechler N, Quillen E, Key CC, Zhu X, Parks JS, Furdui C, Stacpoole PW, et al. Dichloroacetate reverses sepsis-induced hepatic metabolic dysfunction. Elife. 2021;10: e64611. (PMID: 336160397901874)
Albatany M, Li A, Meakin S, Bartha R. Dichloroacetate induced intracellular acidification in glioblastoma: in vivo detection using AACID-CEST MRI at 9.4 Tesla. J Neurooncol. 2018;136:255–62. (PMID: 29143921)
Meng G, Li B, Chen A, Zheng M, Xu T, Zhang H, Dong J, Wu J, Yu D, Wei J. Targeting aerobic glycolysis by dichloroacetate improves Newcastle disease virus-mediated viro-immunotherapy in hepatocellular carcinoma. Br J Cancer. 2020;122:111–20. (PMID: 31819179)
Kim EH, Lee JH, Oh Y, Koh I, Shim JK, Park J, Choi J, Yun M, Jeon JY, Huh YM, et al. Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin. Neuro Oncol. 2017;19:197–207. (PMID: 27571886)
Spiteri AG, Ni D, Ling ZL, Macia L, Campbell IL, Hofer MJ, King NJC. PLX5622 reduces disease severity in lethal CNS infection by off-target inhibition of peripheral inflammatory monocyte production. Front Immunol. 2022;13: 851556. (PMID: 354015128990748)
Getts DR, Terry RL, Getts MT, Muller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJ. Ly6c+ “inflammatory monocytes” are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J Exp Med. 2008;205:2319–37. (PMID: 187793472556789)
Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol. 2005;79:11457–66. (PMID: 161031961193600)
Vidana B, Johnson N, Fooks AR, Sanchez-Cordon PJ, Hicks DJ, Nunez A. West Nile Virus spread and differential chemokine response in the central nervous system of mice: role in pathogenic mechanisms of encephalitis. Transbound Emerg Dis. 2020;67:799–810. (PMID: 31655004)
Kumar M, Verma S, Nerurkar VR. Pro-inflammatory cytokines derived from West Nile virus (WNV)-infected SK-N-SH cells mediate neuroinflammatory markers and neuronal death. J Neuroinflammation. 2010;7:73. (PMID: 210345112984415)
Pajak B, Zielinski R, Manning JT, Matejin S, Paessler S, Fokt I, Emmett MR, Priebe W. The antiviral effects of 2-deoxy-D-glucose (2-DG), a dual D-glucose and D-mannose mimetic, against SARS-CoV-2 and other highly pathogenic viruses. Molecules. 2022;27:5928. (PMID: 361446649503362)
Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI. Treatment of lactic acidosis with dichloroacetate. N Engl J Med. 1983;309:390–6. (PMID: 6877297)
Tataranni T, Piccoli C. Dichloroacetate (DCA) and cancer: an overview towards clinical applications. Oxid Med Cell Longev. 2019;2019:8201079. (PMID: 318277056885244)
معلومات مُعتمدة: PRE2020-093374 Agencia Estatal de Investigación; PID2019-105117RR-C21 Agencia Estatal de Investigación; PID2019-105117RR-C22 Agencia Estatal de Investigación; PID2019-105117RR-C21 Agencia Estatal de Investigación; PID2020-119195RJ-I00 Agencia Estatal de Investigación; PID2019-105117RR-C21 Agencia Estatal de Investigación; PID2019-105117RR-C22 Agencia Estatal de Investigación; PID2019-105117RR-C21 Agencia Estatal de Investigación; NextGenerationEU through CSIC's Global Health Platform (PTI Salud Global) European Commission; NextGenerationEU through CSIC's Global Health Platform (PTI Salud Global) European Commission; NextGenerationEU through CSIC's Global Health Platform (PTI Salud Global) European Commission; NextGenerationEU through CSIC's Global Health Platform (PTI Salud Global) European Commission; NextGenerationEU through CSIC's Global Health Platform (PTI Salud Global) European Commission; NextGenerationEU through CSIC's Global Health Platform (PTI Salud Global) European Commission; NextGenerationEU through CSIC's Global Health Platform (PTI Salud Global) European Commission; NUTRISION-CM/Y2020/BIO-6350 Comunidad de Madrid; NUTRISION-CM/Y2020/BIO-6350 Comunidad de Madrid; NUTRISION-CM/Y2020/BIO-6350 Comunidad de Madrid
فهرسة مساهمة: Keywords: Glycolysis; Immunometabolism; Neuroinflammation; West Nile virus
تواريخ الأحداث: Date Created: 20230927 Date Completed: 20230929 Latest Revision: 20231119
رمز التحديث: 20231119
مُعرف محوري في PubMed: PMC10537838
DOI: 10.1186/s12974-023-02899-3
PMID: 37759218
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-2094
DOI:10.1186/s12974-023-02899-3