دورية أكاديمية

BML-281 promotes neuronal differentiation by modulating Wnt/Ca 2+ and Wnt/PCP signaling pathway.

التفاصيل البيبلوغرافية
العنوان: BML-281 promotes neuronal differentiation by modulating Wnt/Ca 2+ and Wnt/PCP signaling pathway.
المؤلفون: Choi J; Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea., Gang S; Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea.; Department of Pre-Medical Science, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea., Ramalingam M; Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea., Hwang J; Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea., Jeong H; Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea., Yoo J; Department of Physiological Education, Chonnam National University, Gwangju, 61186, Republic of Korea., Cho HH; Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea., Kim BC; Department of Neurology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea., Jang G; School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea., Jeong HS; Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea. jhsjeong@hanmail.net., Jang S; Department of Physiology, Chonnam National University Medical School, Jellanamdo, 58128, Republic of Korea. sujeong.jjang@gmail.com.
المصدر: Molecular and cellular biochemistry [Mol Cell Biochem] 2024 Sep; Vol. 479 (9), pp. 2391-2403. Date of Electronic Publication: 2023 Sep 28.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 0364456 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4919 (Electronic) Linking ISSN: 03008177 NLM ISO Abbreviation: Mol Cell Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: New York : Springer
Original Publication: The Hague, Dr. W. Junk B. V. Publishers.
مواضيع طبية MeSH: Cell Differentiation*/drug effects , Wnt Signaling Pathway*/drug effects , Neurons*/metabolism , Neurons*/drug effects , Neurons*/cytology, Humans ; Cell Line, Tumor ; Calcium/metabolism
مستخلص: Histone deacetylase (HDAC) inhibitors promote differentiation through post-translational modifications of histones. BML-281, an HDAC6 inhibitor, has been known to prevent tumors, acute dextran sodium sulfate-associated colitis, and lung injury. However, the neurogenic differentiation effect of BML-281 is poorly understood. In this study, we investigated the effect of BML-281 on neuroblastoma SH-SY5Y cell differentiation into mature neurons by immunocytochemistry (ICC), reverse transcriptase PCR (RT-PCR), quantitative PCR (qPCR), and western blotting analysis. We found that the cells treated with BML-281 showed neurite outgrowth and morphological changes into mature neurons under a microscope. It was confirmed that the gene expression of neuronal markers (NEFL, MAP2, Tuj1, NEFH, and NEFM) was increased with certain concentrations of BML-281. Similarly, the protein expression of neuronal markers (NeuN, Synaptophysin, Tuj1, and NFH) was upregulated with BML-281 compared to untreated cells. Following treatment with BML-281, the expression of Wnt5α increased, and downstream pathways were activated. Interestingly, both Wnt/Ca 2+ and Wnt/PCP pathways activated and regulated PKC, Cdc42, RhoA, Rac1/2/3, and p-JNK. Therefore, BML-281 induces the differentiation of SH-SY5Y cells into mature neurons by activating the non-canonical Wnt signaling pathway. From these results, we concluded that BML-281 might be a novel drug to differentiation into neuronal cells through the regulation of Wnt signaling pathway to reduce the neuronal cell death.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Chen IC, Sethy B, Liou JP (2020) Recent update of HDAC inhibitors in Lymphoma. Front Cell Dev Biol 8:576391. (PMID: 33015069749478410.3389/fcell.2020.576391)
Bondarev AD et al (2021) Recent developments of HDAC inhibitors: emerging indications and novel molecules. Br J Clin Pharmacol 87(12):4577–4597. (PMID: 3397103110.1111/bcp.14889)
Lanzi C, Cassinelli G (2022) Combinatorial strategies to potentiate the efficacy of HDAC inhibitors in fusion-positive sarcomas. Biochem Pharmacol 198:114944. (PMID: 3515214410.1016/j.bcp.2022.114944)
Phimmachanh M et al (2020) Histone deacetylases and histone deacetylase inhibitors in Neuroblastoma. Front Cell Dev Biol 8:578770. (PMID: 33117806757571010.3389/fcell.2020.578770)
Bass AKA et al (2021) Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur J Med Chem 209:112904. (PMID: 3307726410.1016/j.ejmech.2020.112904)
Ramaiah MJ, Tangutur AD, Manyam RR (2021) Epigenetic modulation and understanding of HDAC inhibitors in cancer therapy. Life Sci 277:119504. (PMID: 3387266010.1016/j.lfs.2021.119504)
San Jose-Eneriz E et al (2019) HDAC inhibitors in Acute myeloid leukemia. Cancers (Basel), 11(11).
Jenke R et al (2021) Anticancer therapy with HDAC inhibitors: mechanism-based combination strategies and future perspectives. Cancers (Basel), 13(4).
Iaconelli J, Xuan L, Karmacharya R (2019) HDAC6 modulates signaling pathways relevant to synaptic Biology and neuronal differentiation in human stem-cell-derived neurons. Int J Mol Sci, 20(7).
Garcia-Dominguez DJ et al (2021) Selective inhibition of HDAC6 regulates expression of the oncogenic driver EWSR1-FLI1 through the EWSR1 promoter in ewing sarcoma. Oncogene 40(39):5843–5853. (PMID: 34345016848401710.1038/s41388-021-01974-4)
Sanchez-Molina S et al (2022) Ewing Sarcoma meets epigenetics, Immunology and Nanomedicine: moving Forward into Novel therapeutic strategies. Cancers (Basel), 14(21).
Do A et al (2017) An HDAC6 inhibitor confers Protection and selectively inhibits B-Cell infiltration in DSS-Induced Colitis in mice. J Pharmacol Exp Ther 360(1):140–151. (PMID: 2782730310.1124/jpet.116.236711)
Ghiboub M et al (2021) Selective targeting of epigenetic readers and histone deacetylases in Autoimmune and Inflammatory Diseases: recent advances and future perspectives. J Pers Med, 11(5).
Suzuki JI et al (2018) Anti-inflammatory action of cysteine derivative S-1-propenylcysteine by inducing MyD88 degradation. Sci Rep 8(1):14148. (PMID: 30237533614821810.1038/s41598-018-32431-0)
Cheng X et al (2019) Therapeutic potential of targeting the Wnt/beta-catenin signaling pathway in colorectal cancer. Biomed Pharmacother 110:473–481. (PMID: 3053005010.1016/j.biopha.2018.11.082)
Frenquelli M, Tonon G (2020) WNT signaling in hematological malignancies. Front Oncol 10:615190. (PMID: 33409156777975710.3389/fonc.2020.615190)
Jang S, Jeong HS (2018) Histone deacetylase inhibition-mediated neuronal differentiation via the wnt signaling pathway in human adipose tissue-derived mesenchymal stem cells. Neurosci Lett 668:24–30. (PMID: 2930759910.1016/j.neulet.2018.01.006)
Liu J et al (2022) Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther 7(1):3. (PMID: 34980884872428410.1038/s41392-021-00762-6)
Wang M et al (2019) Update on the role of the non-canonical Wnt/Planar Cell polarity pathway in neural tube defects. Cells, 8(10).
Wang H et al (2021) The wnt signaling pathway in Diabetic Nephropathy. Front Cell Dev Biol 9:701547. (PMID: 3505939210.3389/fcell.2021.701547)
Arredondo SB et al (2020) Role of wnt signaling in adult hippocampal neurogenesis in Health and Disease. Front Cell Dev Biol 8:860. (PMID: 33042988752500410.3389/fcell.2020.00860)
Vallee A, Lecarpentier Y, Vallee JN (2019) Targeting the canonical WNT/beta-Catenin pathway in Cancer Treatment using non-steroidal anti-inflammatory drugs. Cells, 8(7).
Gajos-Michniewicz A, Czyz M (2020) WNT signaling in Melanoma. Int J Mol Sci, 21(14).
He S, Tang S (2020) WNT/beta-catenin signaling in the development of liver cancers. Biomed Pharmacother 132:110851. (PMID: 3308046610.1016/j.biopha.2020.110851)
Lojk J, Marc J (2021) Roles of non-canonical wnt signalling Pathways in Bone Biology. Int J Mol Sci, 22(19).
Flores-Hernandez E et al (2020) Canonical and non-canonical wnt signaling are simultaneously activated by wnts in colon cancer cells. Cell Signal 72:109636. (PMID: 3228325410.1016/j.cellsig.2020.109636)
Harb J, Lin PJ, Hao J (2019) Recent development of wnt signaling pathway inhibitors for Cancer therapeutics. Curr Oncol Rep 21(2):12. (PMID: 3071561810.1007/s11912-019-0763-9)
Choi J et al (2023) Effects of HDAC inhibitors on neuroblastoma SH-SY5Y cell differentiation into mature neurons via the wnt signaling pathway. BMC Neurosci 24(1):28. (PMID: 371275771015279810.1186/s12868-023-00798-0)
Li X et al (2019) MiR-210-3p inhibits osteogenic differentiation and promotes adipogenic differentiation correlated with wnt signaling in ERalpha-deficient rBMSCs. J Cell Physiol 234(12):23475–23484. (PMID: 3119037210.1002/jcp.28916)
Simoes RF et al (2021) Refinement of a differentiation protocol using neuroblastoma SH-SY5Y cells for use in neurotoxicology research. Food Chem Toxicol 149:111967. (PMID: 3341797410.1016/j.fct.2021.111967)
Jang S et al (2010) Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 11:25. (PMID: 20398362286779110.1186/1471-2121-11-25)
Jeong JA et al (2004) Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. NeuroReport 15(11):1731–1734. (PMID: 1525713710.1097/01.wnr.0000134846.79002.5c)
Trudinger BJ, Giles WB (1989) Clinical and pathologic correlations of umbilical and uterine artery waveforms. Clin Obstet Gynecol 32(4):669–678. (PMID: 269290210.1097/00003081-198912000-00007)
Pipis M et al (2022) Charcot-Marie-Tooth disease type 2CC due to NEFH variants causes a progressive, non-length-dependent, motor-predominant phenotype. J Neurol Neurosurg Psychiatry 93(1):48–56. (PMID: 3451833410.1136/jnnp-2021-327186)
Li D et al (2021) NEFM DNA methylation correlates with immune infiltration and survival in breast cancer. Clin Epigenetics 13(1):112. (PMID: 34001208813035610.1186/s13148-021-01096-4)
Haenig C et al (2020) Interactome Mapping provides a network of neurodegenerative disease proteins and uncovers widespread protein aggregation in affected brains. Cell Rep 32(7):108050. (PMID: 3281405310.1016/j.celrep.2020.108050)
Jang YK et al (2004) Retinoic acid-mediated induction of neurons and glial cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res 75(4):573–584. (PMID: 1474344110.1002/jnr.10789)
Mages B et al (2021) The cytoskeletal elements MAP2 and NF-L show substantial alterations in different stroke models while elevated serum levels highlight especially MAP2 as a sensitive biomarker in Stroke Patients. Mol Neurobiol 58(8):4051–4069. (PMID: 33931805828000510.1007/s12035-021-02372-3)
Loonstra FC et al (2023) Neuroaxonal and glial markers in patients of the same age with multiple sclerosis. Neurol Neuroimmunol Neuroinflamm, 10(2).
Luck K et al (2020) A reference map of the human binary protein interactome. Nature 580(7803):402–408. (PMID: 32296183716998310.1038/s41586-020-2188-x)
Crabtree DV et al (2001) Tubulins in the primate retina: evidence that xanthophylls may be endogenous ligands for the paclitaxel-binding site. Bioorg Med Chem 9(8):1967–1976. (PMID: 1150463310.1016/S0968-0896(01)00103-1)
Baptista I et al (2022) TKTL1 Knockdown impairs Hypoxia-Induced glucose-6-phosphate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase overexpression. Int J Mol Sci, 23(7).
Park M et al (2021) Inhibition of class I HDACs preserves hair follicle inductivity in postnatal dermal cells. Sci Rep 11(1):24056. (PMID: 34911993867422310.1038/s41598-021-03508-0)
Ho TCS, Chan AHY, Ganesan A (2020) Thirty years of HDAC inhibitors: 2020 insight and Hindsight. J Med Chem 63(21):12460–12484. (PMID: 3260898110.1021/acs.jmedchem.0c00830)
El-Naggar AM et al (2019) Class I HDAC inhibitors enhance YB-1 acetylation and oxidative stress to block sarcoma metastasis. EMBO Rep 20(12):e48375. (PMID: 31668005689336110.15252/embr.201948375)
Franci G et al (2013) The class I-specific HDAC inhibitor MS-275 modulates the differentiation potential of mouse embryonic stem cells. Biol Open 2(10):1070–1077. (PMID: 24167717379819010.1242/bio.20135587)
Frumm SM et al (2013) Selective HDAC1/HDAC2 inhibitors induce neuroblastoma differentiation. Chem Biol 20(5):713–725. (PMID: 23706636391944910.1016/j.chembiol.2013.03.020)
Goder A et al (2018) HDAC1 and HDAC2 integrate checkpoint kinase phosphorylation and cell fate through the phosphatase-2A subunit PR130. Nat Commun 9(1):764. (PMID: 29472538582391010.1038/s41467-018-03096-0)
Kiweler N et al (2018) The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch Toxicol 92(7):2227–2243. (PMID: 2984542410.1007/s00204-018-2229-5)
Lee EC et al (2020) The histone deacetylase inhibitor (MS-275) promotes differentiation of Human Dental Pulp Stem cells into Odontoblast-Like cells Independent of the MAPK signaling system. Int J Mol Sci, 21(16).
Liu J et al (2020) Selective class I HDAC inhibitors based on Aryl Ketone zinc binding induce HIV-1 protein for Clearance. ACS Med Chem Lett 11(7):1476–1483. (PMID: 32676157735721810.1021/acsmedchemlett.0c00302)
Ma K et al (2018) Histone deacetylase inhibitor MS-275 restores social and synaptic function in a Shank3-deficient mouse model of autism. Neuropsychopharmacology 43(8):1779–1788. (PMID: 29760409600636810.1038/s41386-018-0073-1)
Shukla S, Tekwani BL (2020) Histone deacetylases inhibitors in neurodegenerative Diseases, neuroprotection and neuronal differentiation. Front Pharmacol 11:537. (PMID: 32390854719411610.3389/fphar.2020.00537)
Tomioka T et al (2014) The histone deacetylase inhibitor trichostatin A induces neurite outgrowth in PC12 cells via the epigenetically regulated expression of the nur77 gene. Neurosci Res 88:39–48. (PMID: 2512838610.1016/j.neures.2014.07.009)
Jung GA et al (2008) Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol 9:66. (PMID: 19068119263938410.1186/1471-2121-9-66)
Calmon MF et al (2015) Epigenetic silencing of neurofilament genes promotes an aggressive phenotype in breast cancer. Epigenetics 10(7):622–632. (PMID: 25985363462248010.1080/15592294.2015.1050173)
Campos-Melo D, Hawley ZCE, Strong MJ (2018) Dysregulation of human NEFM and NEFH mRNA stability by ALS-linked miRNAs. Mol Brain 11(1):43. (PMID: 30029677605472310.1186/s13041-018-0386-3)
Sanchez C, Diaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61(2):133–168. (PMID: 1070499610.1016/S0301-0082(99)00046-5)
Memberg SP, Hall AK (1995) Dividing neuron precursors express neuron-specific tubulin. J Neurobiol 27(1):26–43. (PMID: 764307310.1002/neu.480270104)
Verrier JD et al (2013) Role of CNPase in the oligodendrocytic extracellular 2’,3’-cAMP-adenosine pathway. Glia 61(10):1595–1606. (PMID: 23922219399809210.1002/glia.22523)
Jurga AM et al (2021) Beyond the GFAP-Astrocyte protein markers in the brain. Biomolecules, 11(9).
Anderson MB, Das S, Miller KE (2021) Subcellular localization of neuronal nuclei (NeuN) antigen in size and calcitonin gene-related peptide (CGRP) populations of dorsal root ganglion (DRG) neurons during acute peripheral inflammation. Neurosci Lett 760:135974. (PMID: 34146639835508310.1016/j.neulet.2021.135974)
Ramalingam M, Jang S, Jeong HS (2021) Therapeutic Effects of Conditioned Medium of Neural Differentiated Human Bone Marrow-Derived Stem Cells on Rotenone-Induced Alpha-Synuclein Aggregation and Apoptosis Stem Cells Int, 2021: p. 6658271.
Chang CW, Hsiao YT, Jackson MB (2021) Synaptophysin regulates Fusion Pores and Exocytosis Mode in Chromaffin cells. J Neurosci 41(16):3563–3578. (PMID: 33664131805508310.1523/JNEUROSCI.2833-20.2021)
Schwarz TJ, Ebert B, Lie DC (2012) Stem cell maintenance in the adult mammalian hippocampus: a matter of signal integration? Dev Neurobiol 72(7):1006–1015. (PMID: 2248880910.1002/dneu.22026)
Serafino A et al (2020) Targeting the Wnt/beta-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov 15(7):803–822. (PMID: 3228142110.1080/17460441.2020.1746266)
Suh H, Deng W, Gage FH (2009) Signaling in adult neurogenesis. Annu Rev Cell Dev Biol 25:253–275. (PMID: 1957566310.1146/annurev.cellbio.042308.113256)
Toda T, Gage FH (2018) Review: adult neurogenesis contributes to hippocampal plasticity. Cell Tissue Res 373(3):693–709. (PMID: 2918507110.1007/s00441-017-2735-4)
Bengoa-Vergniory N, Kypta RM (2015) Canonical and noncanonical wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 72(21):4157–4172. (PMID: 263069361111375110.1007/s00018-015-2028-6)
Inestrosa NC, Varela-Nallar L (2015) Wnt signalling in neuronal differentiation and development. Cell Tissue Res 359(1):215–223. (PMID: 2523428010.1007/s00441-014-1996-4)
Oliva CA, Montecinos-Oliva C, Inestrosa NC (2018) Wnt signaling in the Central Nervous System: New Insights in Health and Disease. Prog Mol Biol Transl Sci 153:81–130. (PMID: 2938952310.1016/bs.pmbts.2017.11.018)
Arredondo SB et al (2020) Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical wnt signaling. Stem Cells 38(3):422–436. (PMID: 3172136410.1002/stem.3121)
Ortiz-Matamoros A, Arias C (2019) Differential Changes in the number and morphology of the new neurons after chronic infusion of Wnt7a, Wnt5a, and Dkk-1 in the adult Hippocampus in vivo. Anat Rec (Hoboken) 302(9):1647–1657. (PMID: 3063597410.1002/ar.24069)
Schafer ST et al (2015) The wnt adaptor protein ATP6AP2 regulates multiple stages of adult hippocampal neurogenesis. J Neurosci 35(12):4983–4998. (PMID: 25810528438959710.1523/JNEUROSCI.4130-14.2015)
Galan L et al (2017) Amyotrophic lateral sclerosis modifies progenitor neural proliferation in adult classic neurogenic brain niches. BMC Neurol 17(1):173. (PMID: 28874134558593210.1186/s12883-017-0956-5)
Kase Y et al (2019) Involvement of p38 in Age-Related decline in adult neurogenesis via modulation of wnt signaling. Stem Cell Reports 12(6):1313–1328. (PMID: 31080114656599010.1016/j.stemcr.2019.04.010)
Seib DR et al (2013) Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 12(2):204–214. (PMID: 2339544510.1016/j.stem.2012.11.010)
Toda T et al (2019) The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 24(1):67–87. (PMID: 2967907010.1038/s41380-018-0036-2)
Winner B, Winkler J (2015) Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb Perspect Biol 7(4):a021287. (PMID: 25833845438273410.1101/cshperspect.a021287)
Ekonomou A et al (2015) Stage-specific changes in neurogenic and glial markers in Alzheimer’s disease. Biol Psychiatry 77(8):711–719. (PMID: 2502260410.1016/j.biopsych.2014.05.021)
Moreno-Jimenez EP et al (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–560. (PMID: 3091113310.1038/s41591-019-0375-9)
Tobin MK et al (2019) Human hippocampal neurogenesis persists in aged adults and Alzheimer’s Disease Patients. Cell Stem Cell 24(6):974–982e3. (PMID: 31130513660859510.1016/j.stem.2019.05.003)
Fiorentini A et al (2010) Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS ONE 5(12):e14382. (PMID: 21187954300485810.1371/journal.pone.0014382)
Humphries CE et al (2015) Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer’s disease. J Alzheimers Dis 44(3):977–987. (PMID: 2538058810.3233/JAD-141989)
Rosi MC et al (2010) Increased Dickkopf-1 expression in transgenic mouse models of neurodegenerative disease. J Neurochem 112(6):1539–1551. (PMID: 2005096810.1111/j.1471-4159.2009.06566.x)
Alarcon MA et al (2013) A novel functional low-density lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer’s disease Neurobiol Aging, 34(6): p. 1709 e9-18.
Choi SH et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science, 361(6406).
Shruster A, Offen D (2014) Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer’s disease. Behav Brain Res 261:193–201. (PMID: 2438897910.1016/j.bbr.2013.12.028)
Zhao M et al (2019) Deciphering role of wnt signalling in cardiac mesoderm and cardiomyocyte differentiation from human iPSCs: four-dimensional control of wnt pathway for hiPSC-CMs differentiation. Sci Rep 9(1):19389. (PMID: 31852937692037410.1038/s41598-019-55620-x)
Cao F et al (2017) miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/beta–catenin signaling. Mol Med Rep 16(6):9301–9308. (PMID: 29152645577998310.3892/mmr.2017.7821)
Chen LJ et al (2017) Baicalein enhances the osteogenic differentiation of human periodontal ligament cells by activating the Wnt/beta-catenin signaling pathway. Arch Oral Biol 78:100–108. (PMID: 2822238710.1016/j.archoralbio.2017.01.019)
Nie F et al (2020) Kaempferol promotes proliferation and osteogenic differentiation of periodontal ligament stem cells via Wnt/beta-catenin signaling pathway. Life Sci 258:118143. (PMID: 3271726910.1016/j.lfs.2020.118143)
Chen XJ et al (2019) Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/beta-catenin signaling pathway. Biomed Pharmacother 112:108746. (PMID: 3097053010.1016/j.biopha.2019.108746)
Mazziotta C et al (2021) MicroRNAs Modulate Signaling Pathways in osteogenic differentiation of mesenchymal stem cells. Int J Mol Sci, 22(5).
Sharma AR, Nam JS (2019) Kaempferol stimulates WNT/beta-catenin signaling pathway to induce differentiation of osteoblasts. J Nutr Biochem 74:108228. (PMID: 3167874710.1016/j.jnutbio.2019.108228)
Ma S et al (2019) microRNA-96 promotes osteoblast differentiation and bone formation in ankylosing spondylitis mice through activating the wnt signaling pathway by binding to SOST. J Cell Biochem 120(9):15429–15442. (PMID: 3111156310.1002/jcb.28810)
Strano A et al (2020) Variable outcomes in neural differentiation of human PSCs arise from intrinsic differences in Developmental Signaling Pathways. Cell Rep 31(10):107732. (PMID: 32521257729634810.1016/j.celrep.2020.107732)
Sun X et al (2020) ADNP promotes neural differentiation by modulating Wnt/beta-catenin signaling. Nat Commun 11(1):2984. (PMID: 32533114729328010.1038/s41467-020-16799-0)
Jang S, Park JS, Jeong HS (2015) Neural Differentiation of Human Adipose Tissue-Derived Stem Cells Involves Activation of the Wnt5a/JNK Signalling Stem Cells Int, 2015: p. 178618.
Pickell Z et al (2020) Histone deacetylase inhibitors: a Novel Strategy for Neuroprotection and Cardioprotection following Ischemia/Reperfusion Injury. J Am Heart Assoc 9(11):e016349. (PMID: 32441201742897510.1161/JAHA.120.016349)
Kim HJ et al (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321(3):892–901. (PMID: 1737180510.1124/jpet.107.120188)
Li S et al (2019) Early histone deacetylase inhibition mitigates Ischemia/Reperfusion Brain Injury by reducing Microglia activation and modulating their phenotype. Front Neurol 10:893. (PMID: 31481925671099010.3389/fneur.2019.00893)
Silva MR et al (2018) Neuroprotective effects of valproic acid on brain ischemia are related to its HDAC and GSK3 inhibitions. Pharmacol Biochem Behav 167:17–28. (PMID: 2945213610.1016/j.pbb.2018.02.001)
Zhu S et al (2019) Valproic acid attenuates global cerebral ischemia/reperfusion injury in gerbils via anti-pyroptosis pathways. Neurochem Int 124:141–151. (PMID: 3061175910.1016/j.neuint.2019.01.003)
Mazzocchi M et al (2022) Peripheral administration of the Class-IIa HDAC inhibitor MC1568 partially protects against nigrostriatal neurodegeneration in the striatal 6-OHDA rat model of Parkinson’s disease. Brain Behav Immun 102:151–160. (PMID: 3521717310.1016/j.bbi.2022.02.025)
Su L et al (2020) Neuroprotective mechanism of TMP269, a selective class IIA histone deacetylase inhibitor, after cerebral ischemia/reperfusion injury. Neural Regen Res 15(2):277–284. (PMID: 3155290010.4103/1673-5374.265562)
معلومات مُعتمدة: 2021R1I1A3060435 National Research Foundation of Korea; 2020R1F1A1076616 National Research Foundation of Korea; MOTIE the Korea Institute for Advancement of Technology; BCRI23041 Chonnam National University Hospital Biomedical Research Institute
فهرسة مساهمة: Keywords: BML-281; HDAC inhibitor; Neuronal differentiation; Non-canonical wnt signaling pathway; Wnt signaling pathway
المشرفين على المادة: SY7Q814VUP (Calcium)
تواريخ الأحداث: Date Created: 20230928 Date Completed: 20240903 Latest Revision: 20240903
رمز التحديث: 20240903
DOI: 10.1007/s11010-023-04857-2
PMID: 37768498
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4919
DOI:10.1007/s11010-023-04857-2