دورية أكاديمية

Anserine is expressed in human cardiac and skeletal muscles.

التفاصيل البيبلوغرافية
العنوان: Anserine is expressed in human cardiac and skeletal muscles.
المؤلفون: de Souza Gonçalves L; Applied Physiology & Nutrition Research Group-Center of Lifestyle, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.; Division of Pediatrics, Department of Pediatrics, University of California, San Francisco, California, USA., Pereira WR; Applied Physiology & Nutrition Research Group-Center of Lifestyle, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil., da Silva RP; Applied Physiology & Nutrition Research Group-Center of Lifestyle, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil., Yamaguchi GC; Applied Physiology & Nutrition Research Group-Center of Lifestyle, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil., Carvalho VH; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil., Vargas BS; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil., Jensen L; Laboratorio de Hipertensao do Instituto do Coraçao do Hospital das Clínicas da Faculdade de Medicina da Universidade São Paulo, São Paulo, Brazil., de Medeiros MHG; Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil., Roschel H; Applied Physiology & Nutrition Research Group-Center of Lifestyle, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil., Artioli GG; Department of Life Sciences, Manchester Metropolitan University, Manchester, UK.
المصدر: Physiological reports [Physiol Rep] 2023 Oct; Vol. 11 (19), pp. e15833.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society Country of Publication: United States NLM ID: 101607800 Publication Model: Print Cited Medium: Internet ISSN: 2051-817X (Electronic) Linking ISSN: 2051817X NLM ISO Abbreviation: Physiol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Malden MA] : published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society, 2013-
مواضيع طبية MeSH: Anserine*/analysis , Anserine*/metabolism , Carnosine*/analysis , Carnosine*/metabolism, Humans ; Muscle, Skeletal/metabolism ; Dipeptides/metabolism ; Myocardium/metabolism
مستخلص: We evaluated whether anserine, a methylated analog of the dipeptide carnosine, is present in the cardiac and skeletal muscles of humans and whether the CARNMT1 gene, which encodes the anserine synthesizing enzyme carnosine-N-methyltransferase, is expressed in human skeletal muscle. We found that anserine is present at low concentrations (low micromolar range) in both cardiac and skeletal muscles, and that anserine content in skeletal muscle is ~15 times higher than in cardiac muscle (cardiac muscle: 10.1 ± 13.4 μmol·kg -1 of dry muscle, n = 12; skeletal muscle: 158.1 ± 68.5 μmol·kg -1 of dry muscle, n = 11, p < 0.0001). Anserine content in the heart was highly variable between individuals, ranging from 1.4 to 45.4 μmol·kg -1 of dry muscle, but anserine content was not associated with sex, age, or body mass. We also showed that CARNMT1 gene is poorly expressed in skeletal muscle (n = 10). This is the first study to demonstrate that anserine is present in the ventricle of the human heart. The presence of anserine in human heart and the confirmation of its expression in human skeletal muscle open new avenues of investigation on the specific and differential physiological functions of histidine dipeptides in striated muscles.
(© 2023 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.)
References: Abe, H. (2000). Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc), 65, 757-765.
Abe, H., Dobson, G. P., Hoeger, U., & Parkhouse, W. S. (1985). Role of histidine-related compounds to intracellular buffering in fish skeletal muscle. The American Journal of Physiology, 249, R449-R454.
Batrukova, M. A., & Rubtsov, A. M. (1997). Histidine-containing dipeptides as endogenous regulators of the activity of sarcoplasmic reticulum Ca-release channels. Biochimica et Biophysica Acta, 1324, 142-150.
Bauer, K., & Schulz, M. (1994). Biosynthesis of carnosine and related peptides by skeletal muscle cells in primary culture. European Journal of Biochemistry, 219, 43-47.
Bispo, V. S., de Arruda Campos, I. P., Di Mascio, P., & Medeiros, M. H. (2016). Structural elucidation of a carnosine-acrolein adduct and its quantification in human urine samples. Scientific Reports, 6, 19348.
Blancquaert, L., Baba, S. P., Kwiatkowski, S., Stautemas, J., Stegen, S., Barbaresi, S., Chung, W., Boakye, A. A., Hoetker, J. D., Bhatnagar, A., Delanghe, J., Vanheel, B., Veiga-Da-Cunha, M., Derave, W., & Everaert, I. (2016). Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by beta-alanine transamination. The Journal of Physiology, 594, 4849-4863.
Boldyrev, A. A., Aldini, G., & Derave, W. (2013). Physiology and pathophysiology of carnosine. Physiological Reviews, 93, 1803-1845.
Cao, R., Zhang, X., Liu, X., Li, Y., & Li, H. (2018). Molecular basis for histidine N1 position-specific methylation by CARNMT1. Cell Research, 28, 494-496.
Carvalho, V. H., Oliveira, A. H. S., de Oliveira, L. F., da Silva, R. P., Di Mascio, P., Gualano, B., Artioli, G. G., & Medeiros, M. H. G. (2018). Exercise and beta-alanine supplementation on carnosine-acrolein adduct in skeletal muscle. Redox Biology, 18, 222-228.
Christman, A. A. (1976). Factors affecting anserine and carnosine levels in skeletal muscles of various animals. International Journal of Biochemistry, 7, 519-527.
Creighton, J. V., de Souza Goncalves, L., Artioli, G. G., Tan, D., Elliott-Sale, K. J., Turner, M. D., Doig, C. L., & Sale, C. (2022). Physiological roles of carnosine in myocardial function and health. Advances in Nutrition, 13, 1914-1929.
Crush, K. G. (1970). Carnosine and related substances in animal tissues. Comparative Biochemistry and Physiology, 34, 3-30.
Dolan, E., Saunders, B., Dantas, W. S., Murai, I. H., Roschel, H., Artioli, G. G., Harris, R., Bicudo, J., Sale, C., & Gualano, B. (2018). A comparative study of hummingbirds and chickens provides mechanistic insight on the histidine containing dipeptide role in skeletal muscle metabolism. Scientific Reports, 8, 14788.
Drozak, J., Chrobok, L., Poleszak, O., Jagielski, A. K., & Derlacz, R. (2013). Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmt-like). PLoS One, 8, e64805.
Drozak, J., Piecuch, M., Poleszak, O., Kozlowski, P., Chrobok, L., Baelde, H. J., & De Heer, E. (2015). UPF0586 protein C9orf41 homolog is anserine-producing methyltransferase. The Journal of Biological Chemistry, 290, 17190-17205.
Drozak, J., Veiga-Da-Cunha, M., Vertommen, D., Stroobant, V., & Van Schaftingen, E. (2010). Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1). The Journal of Biological Chemistry, 285, 9346-9356.
Dunnett, M., & Harris, R. C. (1997). High-performance liquid chromatographic determination of imidazole dipeptides, histidine, 1-methylhistidine and 3-methylhistidine in equine and camel muscle and individual muscle fibres. Journal of Chromatography. B, Biomedical Sciences and Applications, 688, 47-55.
Dutka, T. L., Lamboley, C. R., Mckenna, M. J., Murphy, R. M., & Lamb, G. D. (2012). Effects of carnosine on contractile apparatus Ca(2)(+) sensitivity and sarcoplasmic reticulum Ca(2)(+) release in human skeletal muscle fibers. Journal of Applied Physiology, 1985(112), 728-736.
Everaert, I., Mooyaart, A., Baguet, A., Zutinic, A., Baelde, H., Achten, E., Taes, Y., De Heer, E., & Derave, W. (2011). Vegetarianism, female gender and increasing age, but not CNDP1 genotype, are associated with reduced muscle carnosine levels in humans. Amino Acids, 40, 1221-1229.
Everaert, I., Stegen, S., Vanheel, B., Taes, Y., & Derave, W. (2013). Effect of beta-alanine and carnosine supplementation on muscle contractility in mice. Medicine and Science in Sports and Exercise, 45, 43-51.
Flancbaum, L., Fitzpatrick, J. C., Brotman, D. N., Marcoux, A. M., Kasziba, E., & Fisher, H. (1990). The presence and significance of carnosine in histamine-containing tissues of several mammalian species. Agents and Actions, 31, 190-196.
Goncalves, L. S., Kratz, C., Santos, L., Carvalho, V. H., Sales, L. P., Nemezio, K., Longobardi, I., Riani, L. A., Lima, M. M. O., Saito, T., Fernandes, A. L., Rodrigues, J., James, R. M., Sale, C., Gualano, B., Geloneze, B., de Medeiros, M. H. G., & Artioli, G. G. (2020). Insulin does not stimulate beta-alanine transport into human skeletal muscle. American Journal of Physiology. Cell Physiology, 318, C777-C786.
Goncalves, L. S., Sales, L. P., Saito, T. R., Campos, J. C., Fernandes, A. L., Natali, J., Jensen, L., Arnold, A., Ramalho, L., Bechara, L. R. G., Esteca, M. V., Correa, I., Sant'anna, D., Ceroni, A., Michelini, L. C., Gualano, B., Teodoro, W., Carvalho, V. H., Vargas, B. S., … Artioli, G. G. (2021). Histidine dipeptides are key regulators of excitation-contraction coupling in cardiac muscle: Evidence from a novel CARNS1 knockout rat model. Redox Biology, 44, 102016.
Harris, R. C., Tallon, M. J., Dunnett, M., Boobis, L., Coakley, J., Kim, H. J., Fallowfield, J. L., Hill, C. A., Sale, C., & Wise, J. A. (2006). The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids, 30, 279-289.
Harris, R. C., Wise, J. A., Price, K. A., Kim, H. J., Kim, C. K., & Sale, C. (2012). Determinants of muscle carnosine content. Amino Acids, 43, 5-12.
Hoetker, D., Chung, W., Zhang, D., Zhao, J., Schmidtke, V. K., Riggs, D. W., Derave, W., Bhatnagar, A., Bishop, D. J., & Baba, S. P. (2018). Exercise alters and beta-alanine combined with exercise augments histidyl dipeptide levels and scavenges lipid peroxidation products in human skeletal muscle. Journal of Applied Physiology, 1985, 1767-1778.
Kohen, R., Yamamoto, Y., Cundy, K. C., & Ames, B. N. (1988). Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proceedings of the National Academy of Sciences of the United States of America, 85, 3175-3179.
Lievens, E., Van Vossel, K., Van de Casteele, F., Baguet, A., & Derave, W. (2021). Sex-specific maturation of muscle metabolites carnosine, creatine, and carnitine over puberty: A longitudinal follow-up study. Journal of Applied Physiology, 1985(131), 1241-1250.
Mannion, A. F., Jakeman, P. M., Dunnett, M., Harris, R. C., & Willan, P. L. (1992). Carnosine and anserine concentrations in the quadriceps femoris muscle of healthy humans. European Journal of Applied Physiology and Occupational Physiology, 64, 47-50.
Mcmanus, I. R. (1962). Enzymatic synthesis of anserine in skeletal muscle by N-methylation of carnosine. The Journal of Biological Chemistry, 237, 1207-1211.
Painelli, V. S., Nemezio, K. M., Pinto, A. J., Franchi, M., Andrade, I., Riani, L. A., Saunders, B., Sale, C., Harris, R. C., Gualano, B., & Artioli, G. G. (2018). High-intensity interval training augments muscle carnosine in the absence of dietary Beta-alanine intake. Medicine and Science in Sports and Exercise, 50, 2242-2252.
Peters, V., Klessens, C. Q., Baelde, H. J., Singler, B., Veraar, K. A., Zutinic, A., Drozak, J., Zschocke, J., Schmitt, C. P., & de Heer, E. (2015). Intrinsic carnosine metabolism in the human kidney. Amino Acids, 47, 2541-2550.
Rezende, N. S., Swinton, P., de Oliveira, L. F., da Silva, R. P., da Eira Silva, V., Nemezio, K., Yamaguchi, G., Artioli, G. G., Gualano, B., Saunders, B., & Dolan, E. (2020). The muscle carnosine response to Beta-alanine supplementation: A systematic review with Bayesian individual and aggregate data E-max model and meta-analysis. Frontiers in Physiology, 11, 913.
Saunders, B., Painelli, V. D. E. S., Oliveira, L. F. D. E., Silva, V. D. A. E., Silva, R. P. D. A., Riani, L., Franchi, M., Goncalves, L. S., Harris, R. C., Roschel, H., Artioli, G. G., Sale, C., & Gualano, B. (2017). Twenty-four weeks of beta-alanine supplementation on carnosine content, related genes, and exercise. Medicine and Science in Sports and Exercise, 49, 896-906.
Smith, E. C. (1938). The buffering of muscle in rigor; protein, phosphate and carnosine. The Journal of Physiology, 92, 336-343.
Yamaguchi, G. C., Nemezio, K., Schulz, M. L., Natali, J., Cesar, J. E., Riani, L. A., Goncalves, L. S., Moller, G. B., Sale, C., Mhg, D. E. M., Gualano, B., & Artioli, G. G. (2021). Kinetics of muscle carnosine decay after beta-alanine supplementation: A 16-wk washout study. Medicine and Science in Sports and Exercise, 53, 1079-1088.
Zhao, J., Conklin, D. J., Guo, Y., Zhang, X., Obal, D., Guo, L., Jagatheesan, G., Katragadda, K., He, L., Yin, X., Prodhan, M. A. I., Shah, J., Hoetker, D., Kumar, A., Kumar, V., Wempe, M. F., Bhatnagar, A., & Baba, S. P. (2020). Cardiospecific overexpression of ATPGD1 (carnosine synthase) increases histidine dipeptide levels and prevents myocardial ischemia reperfusion injury. Journal of the American Heart Association, 9, e015222.
فهرسة مساهمة: Keywords: anserine; carnosine-N-methyltransferase; heart; human; muscle
المشرفين على المادة: HDQ4N37UGV (Anserine)
8HO6PVN24W (Carnosine)
0 (Dipeptides)
تواريخ الأحداث: Date Created: 20230929 Date Completed: 20231002 Latest Revision: 20231016
رمز التحديث: 20231016
مُعرف محوري في PubMed: PMC10539627
DOI: 10.14814/phy2.15833
PMID: 37771070
قاعدة البيانات: MEDLINE
الوصف
تدمد:2051-817X
DOI:10.14814/phy2.15833