دورية أكاديمية

Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells.

التفاصيل البيبلوغرافية
العنوان: Zero-Mode Waveguide Nanowells for Single-Molecule Detection in Living Cells.
المؤلفون: Yang S; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands., Klughammer N; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands., Barth A; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands., Tanenbaum ME; Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands., Dekker C; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
المصدر: ACS nano [ACS Nano] 2023 Oct 24; Vol. 17 (20), pp. 20179-20193. Date of Electronic Publication: 2023 Oct 04.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101313589 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1936-086X (Electronic) Linking ISSN: 19360851 NLM ISO Abbreviation: ACS Nano Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington D.C. : American Chemical Society
مواضيع طبية MeSH: Nanotechnology*/methods , Microscopy*, Single Molecule Imaging ; Spectrometry, Fluorescence/methods
مستخلص: Single-molecule fluorescence imaging experiments generally require sub-nanomolar protein concentrations to isolate single protein molecules, which makes such experiments challenging in live cells due to high intracellular protein concentrations. Here, we show that single-molecule observations can be achieved in live cells through a drastic reduction in the observation volume using overmilled zero-mode waveguides (ZMWs- subwavelength-size holes in a metal film). Overmilling of the ZMW in a palladium film creates a nanowell of tunable size in the glass layer below the aperture, which cells can penetrate. We present a thorough theoretical and experimental characterization of the optical properties of these nanowells over a wide range of ZMW diameters and overmilling depths, showing an excellent signal confinement and a 5-fold fluorescence enhancement of fluorescent molecules inside nanowells. ZMW nanowells facilitate live-cell imaging as cells form stable protrusions into the nanowells. Importantly, the nanowells greatly reduce the cytoplasmic background fluorescence, enabling the detection of individual membrane-bound fluorophores in the presence of high cytoplasmic expression levels, which could not be achieved with TIRF microscopy. Zero-mode waveguide nanowells thus provide great potential to study individual proteins in living cells.
References: Biophys J. 2009 Dec 16;97(12):3196-205. (PMID: 20006957)
Nanotechnology. 2021 Apr 30;32(18):18LT01. (PMID: 33412532)
Biomaterials. 1999 Dec;20(23-24):2427-33. (PMID: 10614947)
Mol Cell. 2015 May 21;58(4):644-59. (PMID: 26000849)
ACS Meas Sci Au. 2023 May 09;3(4):239-257. (PMID: 37600457)
J Am Chem Soc. 2003 Mar 5;125(9):2597-609. (PMID: 12603148)
Sensors (Basel). 2017 Jun 20;17(6):. (PMID: 28632153)
Biophys J. 2006 May 1;90(9):3288-99. (PMID: 16461393)
Nat Methods. 2023 Apr;20(4):523-535. (PMID: 36973549)
Biotechnol Bioeng. 2003 Jun 30;82(7):784-90. (PMID: 12701144)
Biophys J. 2007 Feb 1;92(3):913-9. (PMID: 17085499)
Nanoscale Adv. 2020 Mar 25;2(5):1894-1903. (PMID: 36132495)
Opt Express. 2007 Oct 17;15(21):14266-74. (PMID: 19550702)
Biophys J. 2005 Nov;89(5):3508-22. (PMID: 16113120)
Opt Express. 2019 Jun 24;27(13):19002-19018. (PMID: 31252834)
Nat Nanotechnol. 2017 Dec;12(12):1169-1175. (PMID: 28892102)
ACS Chem Biol. 2008 Jun 20;3(6):373-82. (PMID: 18533659)
Annu Rev Biochem. 2018 Jun 20;87:697-724. (PMID: 29652515)
Phys Rev B Condens Matter. 1986 Jun 15;33(12):7923-7936. (PMID: 9938182)
Elife. 2021 Mar 29;10:. (PMID: 33779550)
Adv Mater. 2017 Mar;29(9):. (PMID: 28026129)
ACS Nano. 2019 Jul 23;13(7):8469-8480. (PMID: 31283186)
Phys Rev Lett. 2005 Sep 9;95(11):117401. (PMID: 16197045)
Science. 2003 Jan 31;299(5607):682-6. (PMID: 12560545)
Cell. 2016 May 5;165(4):976-89. (PMID: 27153498)
Front Chem. 2018 Dec 21;6:637. (PMID: 30619840)
Biophys J. 2005 Mar;88(3):2145-53. (PMID: 15613638)
JACS Au. 2021 May 24;1(5):690-696. (PMID: 34056637)
Anal Chem. 2004 Oct 15;76(20):6116-21. (PMID: 15481961)
ACS Nano. 2023 Oct 24;17(20):20179-20193. (PMID: 37791900)
Nat Methods. 2018 Sep;15(9):669-676. (PMID: 30171252)
Nat Commun. 2014 Nov 05;5:5356. (PMID: 25370834)
ACS Nano. 2009 Jul 28;3(7):2043-8. (PMID: 19518085)
Biophys J. 2018 Apr 10;114(7):1518-1528. (PMID: 29642023)
Phys Rev Lett. 2014 Jul 11;113(2):028302. (PMID: 25062242)
Nano Lett. 2012 Jul 11;12(7):3690-4. (PMID: 22668081)
Histochem Cell Biol. 2008 Nov;130(5):795-805. (PMID: 18800223)
Chem Rev. 2005 Apr;105(4):1103-69. (PMID: 15826011)
Genomics Proteomics Bioinformatics. 2015 Oct;13(5):278-89. (PMID: 26542840)
Biophys J. 2022 Jan 18;121(2):327-335. (PMID: 34896371)
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):012727. (PMID: 23944510)
Anal Chem. 2008 Aug 1;80(15):6018-22. (PMID: 18563914)
J Phys Chem A. 2016 Sep 1;120(34):6719-27. (PMID: 27499174)
Cell. 2015 Feb 12;160(4):659-672. (PMID: 25679760)
فهرسة مساهمة: Keywords: fluorescence correlation spectroscopy; fluorescence enhancement; fluorescence microscopy; live-cell imaging; palladium; single-molecule fluorescence; zero-mode waveguide
تواريخ الأحداث: Date Created: 20231004 Date Completed: 20231026 Latest Revision: 20231029
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10604100
DOI: 10.1021/acsnano.3c05959
PMID: 37791900
قاعدة البيانات: MEDLINE
الوصف
تدمد:1936-086X
DOI:10.1021/acsnano.3c05959