دورية أكاديمية

Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings.

التفاصيل البيبلوغرافية
العنوان: Virtual reality as a countermeasure for astronaut motion sickness during simulated post-flight water landings.
المؤلفون: Lonner TL; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA. taylor.lonner@colorado.edu., Allred AR; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA., Bonarrigo L; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA., Gopinath A; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA., Smith K; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA., Kravets V; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA., Groen EL; Human Performance Department, TNO, Soesterberg, The Netherlands., Oman C; Human Systems Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA., DiZio P; Ashton Graybiel Spatial Orientation Laboratory, Brandeis University, Waltham, MA, USA.; Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA.; Psychology Department, Brandeis University, Waltham, MA, USA., Lawson BD; Naval Submarine Medical Research Laboratory, Groton, CT, USA., Clark TK; Smead Department of Aerospace Engineering Sciences, University of Colorado-Boulder, Boulder, CO, USA.
المصدر: Experimental brain research [Exp Brain Res] 2023 Dec; Vol. 241 (11-12), pp. 2669-2682. Date of Electronic Publication: 2023 Oct 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0043312 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-1106 (Electronic) Linking ISSN: 00144819 NLM ISO Abbreviation: Exp Brain Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Verlag
مواضيع طبية MeSH: Space Flight* , Motion Sickness* , Virtual Reality*, Humans ; Astronauts ; Space Motion Sickness/drug therapy ; Nausea/etiology
مستخلص: Entry motion sickness (EMS) affects crewmembers upon return to Earth following extended adaptation to microgravity. Anticholinergic pharmaceuticals (e.g., Meclizine) are often taken prior to landing; however, they have operationally adverse side effects (e.g., drowsiness). There is a need to develop non-pharmaceutical countermeasures to EMS. We assessed the efficacy of a technological countermeasure providing external visual cues following splashdown, where otherwise only nauseogenic internal cabin visual references are available. Our countermeasure provided motion-congruent visual cues of an Earth-fixed scene in virtual reality, which was compared to a control condition with a head-fixed fixation point in virtual reality in a between-subject design with 15 subjects in each group. We tested the countermeasure's effectiveness at mitigating motion sickness symptoms at the end of a ground-based reentry analog: approximately 1 h of 2Gx centrifugation followed by up to 1 h of wave-like motion. Secondarily, we explored differences in vestibular-mediated balance performance between the two conditions. While Motion Sickness Questionnaire outcomes did not differ detectably between groups, we found significantly better survival rates (with dropout dictated by reporting moderate nausea consecutively over 2 min) in the visual countermeasure group than the control group (79% survival vs. 33%, t(14) = 2.50, p = 0.027). Following the reentry analogs, subjects demonstrated significantly higher sway prior to recovery (p = 0.0004), which did not differ between control and countermeasure groups. These results imply that providing motion-congruent visual cues may be an effective mean for curbing the development of moderate nausea and increasing comfort following future space missions.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Agrawal Y, Carey JP, Hoffman HJ, Sklare DA, Schubert MC (2011) The modified romberg balance test: normative data in U.S. Adults. Otology & Neurotology 32(8):1309. https://doi.org/10.1097/MAO.0b013e31822e5bee. (PMID: 10.1097/MAO.0b013e31822e5bee)
Albery WB, Martin ET (1996) Development of space motion sickness in a ground-based human centrifuge. Acta Astronaut 38(9):721–731. https://doi.org/10.1016/0094-5765(96)00011-2. (PMID: 10.1016/0094-5765(96)00011-211540754)
Allred AR, Kravets VG, Ahmed N, Clark TK (2023) Modeling orientation perception adaptation to altered gravity environments with memory of past sensorimotor states. Frontiers in Neural Circuits 17:1190582. https://doi.org/10.3389/fncir.2023.1190582. (PMID: 10.3389/fncir.2023.11905823754705210399228)
Bagian JP (1991) First intramuscular administration in the U.S. Space program. J Clin Pharmacol 31(10):920. https://doi.org/10.1002/j.1552-4604.1991.tb03649.x. (PMID: 10.1002/j.1552-4604.1991.tb03649.x1761721)
Bagian JP, Ward DF (1994) A retrospective study of promethazine and its failure to produce the expected incidence of sedation during space flight. J Clin Pharmacol 34(6):649–651. https://doi.org/10.1002/j.1552-4604.1994.tb02019.x. (PMID: 10.1002/j.1552-4604.1994.tb02019.x)
Beltran, N. E., Bollinger, A., Duplechin, R., Wang, Z., Daniels, V. R., Reschke, M. F., & Wood, S. J. (2022). Optimizing the Combination of Intranasal Scopolamine and Sensory Augmentation to Mitigate G-Transition Induced Motion Sickness and Enhance Sensorimotor Performance. Human Research Program Investigators’ Workshop. https://ntrs.nasa.gov/citations/20220001874.
Bermúdez Rey MC, Clark TK, Merfeld DM (2017) Balance screening of vestibular function in subjects aged 4 years and older: a living laboratory experience. Front Neurol. https://doi.org/10.3389/fneur.2017.00631. (PMID: 10.3389/fneur.2017.00631292343015712334)
Bles W, de Graaf B (1993) Postural consequences of long duration centrifugation. J Vestibular Res Equilibrium Orientation https://www.semanticscholar.org/paper/Postural-consequences-of-long-duration-Bles-Graaf/2a3ea3861b6e5cc10d9720e269e390f31d6269e5.
Bles W, Graaf B de , Bos JE (1996) Space adaptation syndrome (SAS) and sickness induced by centrifugation (SIC): Vestibular consequences of earth anomalous gravity. J Vestib Res 4 Supplement 1; S(6), S66.
Bles W, de Graaf B, Bos JE, Groen E, Krol JR (1997) A sustained hyper-g load as a tool to simulate space sickness. J Gravit Physiol 4(2):1–4.
Bos JE, MacKinnon SN, Patterson A (2005) Motion sickness symptoms in a ship motion simulator. Effects Inside Outside No View 76(12):8.
Bos JE, Diels C, Souman JL (2022) Beyond seasickness: a motivated call for a new motion sickness standard across motion environments. Vibration. https://doi.org/10.3390/vibration5040044. (PMID: 10.3390/vibration5040044)
Bretl KN, Clark TK (2020) Improved feasibility of astronaut short-radius artificial gravity through a 50-day incremental, personalized, vestibular acclimation protocol. Npj Microgravity. https://doi.org/10.1038/s41526-020-00112-w. (PMID: 10.1038/s41526-020-00112-w32885040)
Bretl KN, Clark TK (2022) Predicting individual acclimation to the cross-coupled illusion for artificial gravity. J Vestib Res 32(4):305–316. https://doi.org/10.3233/VES-210019. (PMID: 10.3233/VES-210019)
Bretl KN, McCusker AT, Sherman SO, Mitchell TR, Dixon JB, Clark TK (2019) Tolerable acclimation to the cross-coupled illusion through a 10-day, incremental, personalized protocol. J Vestibular Res Equilib Orientat 29(2/3):97–110. https://doi.org/10.3233/VES-190656. (PMID: 10.3233/VES-190656)
Cha Y-H, Golding JF, Keshavarz B, Furman J, Kim J-S, Lopez-Escamez JA, Magnusson M, Yates BJ, Lawson BD (2021) Motion sickness diagnostic criteria: consensus document of the classification committee of the Bárány society. J Vestib Res 31(5):327–344. https://doi.org/10.3233/VES-200005. (PMID: 10.3233/VES-200005336461879249300)
Clément GR, Boyle RD, George KA, Nelson GA, Reschke MF, Williams TJ, Paloski WH (2020) Challenges to the central nervous system during human spaceflight missions to Mars. J Neurophysiol 123(5):2037–2063. https://doi.org/10.1152/jn.00476.2019. (PMID: 10.1152/jn.00476.201932292116)
Cowings PS, Toscano WB, DeRoshia C, Miller NE (2000) Promethazine as a motion sickness treatment: impact on human performance and mood states. Aviat Space Environ Med 71(10):1013–1022. (PMID: 11051308)
Davis JR, Jennings RT, Beck BG (1993a) Comparison of treatment strategies for space motion sickness. Acta Astronaut 29(8):587–591. https://doi.org/10.1016/0094-5765(93)90074-7. (PMID: 10.1016/0094-5765(93)90074-7)
Davis JR, Jennings RT, Beck BG, Bagian JP (1993b) Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat Space Environ Med 64(3 Pt 1):230–233. (PMID: 8447805)
Davis S, Nesbitt K, Nalivaiko E (2014) A systematic review of cybersickness. Proc Conf Interactive Entertain. https://doi.org/10.1145/26777582677780. (PMID: 10.1145/26777582677780)
Dervay, J. (2023). NASA Commercial Crew Program and Medical Operational Challenges. 2023 Aerospace Medical Association Conference.
Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE (2009) Dynamic reweighting of visual and vestibular cues during self-motion perception. J Neurosci 29(49):15601–15612. https://doi.org/10.1523/JNEUROSCI.2574-09.2009. (PMID: 10.1523/JNEUROSCI.2574-09.2009200074842824339)
Golding JF (1998) Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res Bull 47(5):507–516. https://doi.org/10.1016/S0361-9230(98)00091-4. (PMID: 10.1016/S0361-9230(98)00091-410052582)
Golding JF (2006) Predicting individual differences in motion sickness susceptibility by questionnaire. Personality Individ Differ 41(2):237–248. https://doi.org/10.1016/j.paid.2006.01.012. (PMID: 10.1016/j.paid.2006.01.012)
Golding JF, Paillard AC, Normand H, Besnard S, Denise P (2017) Prevalence, predictors, and prevention of motion sickness in zero-G parabolic flights. Aerospace Med Hum Perform 88(1):3–9. https://doi.org/10.3357/AMHP.4705.2017. (PMID: 10.3357/AMHP.4705.2017)
Gorgiladze GI, Brianov II (1989) Space motion sickness. Kosm Biol Aviakosm Med 23(3):4–14. (PMID: 2668636)
Graybiel A, Knepton J (1976) Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 47(8):873–882. (PMID: 949309)
Graybiel A, Lackner JR (1987) Treatment of severe motion sickness with antimotion sickness drug injections. Aviat Space Environ Med 58(8):773–776. (PMID: 3632537)
Griffin MJ, Newman MM (2004) Visual field effects on motion sickness in cars. Aviat Space Environ Med 75(9):10.
Groen E, de Graaf B, Bles W, Bos JE (1996) Ocular torsion before and after 1 hour centrifugation. Brain Res Bull 40(5):331–333. https://doi.org/10.1016/0361-9230(96)00125-6. (PMID: 10.1016/0361-9230(96)00125-68886355)
Gupta AK, Kumar BV, Rajguru R, Parate K (2021) Assessment of sea sickness in naval personnel: incidence and management. Ind J Occup Environ Med 25(2):119–124. https://doi.org/10.4103/ijoem.IJOEM_94_20. (PMID: 10.4103/ijoem.IJOEM_94_20)
Heer M, Paloski WH (2006) Space motion sickness: incidence, etiology, and countermeasures. Auton Neurosci 129(1):77–79. https://doi.org/10.1016/j.autneu.2006.07.014. (PMID: 10.1016/j.autneu.2006.07.01416935570)
Héroux ME, Law TCY, Fitzpatrick RC, Blouin J-S (2015) Cross-modal calibration of vestibular afference for human balance. PLoS ONE 10(4):e0124532. https://doi.org/10.1371/journal.pone.0124532. (PMID: 10.1371/journal.pone.0124532258945584403994)
Hock, P., Benedikter, S., Gugenheimer, J., & Rukzio, E. (2017). CarVR: Enabling In-Car Virtual Reality Entertainment. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 4034–4044. https://doi.org/10.1145/3025453.3025665.
Hupfeld KE, McGregor HR, Koppelmans V, Beltran NE, Kofman IS, De Dios YE, Riascos RF, Reuter-Lorenz PA, Wood SJ, Bloomberg JJ, Mulavara AP, Seidler RD (2022) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 32(4):755–769. https://doi.org/10.1093/cercor/bhab239. (PMID: 10.1093/cercor/bhab23934416764)
Irmak T, de Winkel KN, Pool DM, Bülthoff HH, Happee R (2021) Individual motion perception parameters and motion sickness frequency sensitivity in fore-aft motion. Exp Brain Res 239(6):1727–1745. https://doi.org/10.1007/s00221-021-06093-w. (PMID: 10.1007/s00221-021-06093-w337797938006642)
Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3(3):203. https://doi.org/10.1207/s15327108ijap0303_3. (PMID: 10.1207/s15327108ijap0303_3)
Kravets VG, Dixon JB, Ahmed NR, Clark TK (2021) COMPASS: computations for orientation and motion perception in altered sensorimotor states. Frontiers in Neural Circuits. https://doi.org/10.3389/fncir.2021.757817. (PMID: 10.3389/fncir.2021.757817347208898553968)
Krueger WWO (2011) Controlling motion sickness and spatial disorientation and enhancing vestibular rehabilitation with a user-worn see-through display. Laryngoscope 121(S2):S17–S35. https://doi.org/10.1002/lary.21373. (PMID: 10.1002/lary.21373211819634769875)
Lackner JR (2014) Motion sickness: More than nausea and vomiting. Exp Brain Res 232(8):2493–2510. https://doi.org/10.1007/s00221-014-4008-8. (PMID: 10.1007/s00221-014-4008-8249617384112051)
Lackner JR, DiZio P (2006) Space motion sickness. Exp Brain Res 175(3):377–399. https://doi.org/10.1007/s00221-006-0697-y. (PMID: 10.1007/s00221-006-0697-y17021896)
Lackner JR, Graybiel A (1987) Head movements in low and high gravitoinertial force environments elicit motion sickness: implications for space motion sickness. Aviat Space Environ Med 58(9 Pt 2):A212–A217. (PMID: 3675494)
Lawson BD, Mead AM (1998) The sopite syndrome revisited: drowsiness and mood changes during real or apparent motion. Acta Astronaut 43(3):181–192. https://doi.org/10.1016/S0094-5765(98)00153-2. (PMID: 10.1016/S0094-5765(98)00153-2)
Lawson, B. (2014). Motion Sickness Symptomatology and Origins (pp. 531–600). https://doi.org/10.1201/b17360-29.
Lawson, B. D. (2014). Chapter 24. Motion Sickness Scaling.
Lee SMC, Ribeiro LC, Laurie SS, Feiveson AH, Kitov VV, Kofman IS, Macias BR, Rosenberg M, Rukavishnikov IV, Tomilovskaya ES, Bloomberg JJ, Kozlovskaya IB, Reschke MF, Stenger MB (2020) Efficacy of gradient compression garments in the hours after long-duration spaceflight. Front Physiol. https://doi.org/10.3389/fphys.2020.00784. (PMID: 10.3389/fphys.2020.00784336646727732452)
Lucot JB (1998) Pharmacology of motion sickness. J Vestib Res 8(1):61–66. https://doi.org/10.3233/VES-1998-8109. (PMID: 10.3233/VES-1998-81099416591)
Marteau TM, Bekker H (1992) The development of a six-item short-form of the state scale of the spielberger state—trait anxiety inventory (STAI). Br J Clin Psychol 31(3):301–306. https://doi.org/10.1111/j.2044-8260.1992.tb00997.x. (PMID: 10.1111/j.2044-8260.1992.tb00997.x1393159)
Mills KL, Griffin MJ (2000) Effect of seating, vision and direction of horizontal oscillation on motion sickness. Aviat Space Environ Med 71:996–1002.
Nooij SAE, Bos JE (2007) Sickness induced by head movements after different centrifugal Gx-loads and durations. J Vestib Res 17(5–6):323–332. https://doi.org/10.3233/VES-2007-175-612. (PMID: 10.3233/VES-2007-175-61218626142)
Nooij SAE, Bos JE, Groen EL, Bles W, Ockels WJ (2007) Space sickness on earth. Microgravit Sci Technol 19(5):113–117. https://doi.org/10.1007/BF02919464. (PMID: 10.1007/BF02919464)
Nooij SAE, Bos JE, Groen EL (2008) Orientation of listing’s plane after hypergravity in humans. J Vestib Res 18(2–3):97–105. https://doi.org/10.3233/VES-2008-182-303. (PMID: 10.3233/VES-2008-182-303)
Nooij, S. A. E., Le Mair, A. F., Bos, J. E., & Groen, E. L. (2005). Vestibular adaptation to changing gravity levels and orientation of Listing’s plane. 585, 61.
O’Hanlon, J. F., & McCauley, M. E. (1973). Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. CANYON RESEARCH GROUP INC GOLETA CA HUMAN FACTORS RESEARCH DIV.
Ockels WJ, Furrer R, Messerschmid E (1990) Simulation of space adaptation syndrome on earth. Exp Brain Res 79(3):661–663. https://doi.org/10.1007/BF00229334. (PMID: 10.1007/BF002293342340882)
Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol 94(sup392):4–44. https://doi.org/10.3109/00016488209108197. (PMID: 10.3109/00016488209108197)
Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68(2):294–303. https://doi.org/10.1139/y90-044. (PMID: 10.1139/y90-0442178753)
Oman CM, Cullen KE (2014) Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology. Exp Brain Res 10:2492.
Ortega HJ, Harm DL, Reschke MF (2019) Space and entry motion sickness. In: Barratt MR, Baker ES, Pool SL (eds) Principles of clinical medicine for space flight. Springer New York, New York, pp 441–456. https://doi.org/10.1007/978-1-4939-9889-0_14. (PMID: 10.1007/978-1-4939-9889-0_14)
Pechenkova E, Nosikova I, Rumshiskaya A, Litvinova L, Rukavishnikov I, Mershina E, Sinitsyn V, Van Ombergen A, Jeurissen B, Jillings S, Laureys S, Sijbers J, Grishin A, Chernikova L, Naumov I, Kornilova L, Wuyts FL, Tomilovskaya E, Kozlovskaya I (2019) Alterations of functional brain connectivity after long-duration spaceflight as revealed by fMRI. Front Physiol. https://doi.org/10.3389/fphys.2019.00761. (PMID: 10.3389/fphys.2019.00761313334766621543)
Perrin P, Lion A, Bosser G, Gauchard G, Meistelman C (2013) Motion sickness in rally car co-drivers. Aviat Space Environ Med 84(5):473–477. https://doi.org/10.3357/ASEM.3523.2013. (PMID: 10.3357/ASEM.3523.201323713212)
Reason JT, Brand JJ (1975) Motion sickness. Academic Press, Cambridge, pp vii–310.
Schmidt EA, Kuiper OX, Wolter S, Diels C, Bos JE (2020) An international survey on the incidence and modulating factors of carsickness. Transport Res f: Traffic Psychol Behav 71:76–87. https://doi.org/10.1016/j.trf.2020.03.012. (PMID: 10.1016/j.trf.2020.03.012)
Stelling D, Hermes M, Huelmann G, Mittelstädt J, Niedermeier D, Schudlik K, Duda H (2021) Individual differences in the temporal progression of motion sickness and anxiety: the role of passengers’ trait anxiety and motion sickness history. Ergonomics 64(8):1062–1071. https://doi.org/10.1080/00140139.2021.1886334. (PMID: 10.1080/00140139.2021.188633433566736)
Stoffregen TA, Chen F-C, Varlet M, Alcantara C, Bardy BG (2013) Getting your sea legs. PLoS ONE 8(6):e66949. https://doi.org/10.1371/journal.pone.0066949. (PMID: 10.1371/journal.pone.0066949238405603686767)
Thornton WE, Bonato F (2013) Space motion sickness and motion sickness: symptoms and etiology. Aviat Space Environ Med 84(7):716–721. https://doi.org/10.3357/ASEM.3449.2013. (PMID: 10.3357/ASEM.3449.2013)
Turner M (1999) Motion sickness in public road transport: passenger behaviour and susceptibility. Ergonomics 42(3):444–461. https://doi.org/10.1080/001401399185586. (PMID: 10.1080/00140139918558610048305)
Wood CD, Stewart JJ, Wood MJ, Manno JE, Manno BR, Mims ME (1990) Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness. Aviat Space Environ Med 61(2):157–161. (PMID: 2178599)
Wood SJ, Loehr JA, Guilliams ME (2011) Sensorimotor reconditioning during and after spaceflight. Neuro Rehabilit 29(2):185–195. https://doi.org/10.3233/NRE-2011-0694. (PMID: 10.3233/NRE-2011-0694)
معلومات مُعتمدة: 80NSSC21K0257 United States NASA NASA; 80NSSC21K0257 United States NASA NASA
فهرسة مساهمة: Keywords: Adaptation; Centrifugation; Entry motion sickness; Sensory conflict; Space motion sickness; Vestibular
تواريخ الأحداث: Date Created: 20231005 Date Completed: 20231110 Latest Revision: 20231110
رمز التحديث: 20231215
DOI: 10.1007/s00221-023-06715-5
PMID: 37796301
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1106
DOI:10.1007/s00221-023-06715-5