دورية أكاديمية

The Effect of Calcium hydroxide, Glass Ionomer and light cured resin modified calcium silicate on viability, proliferation and differentiation of stem cells from human exfoliated deciduous teeth.

التفاصيل البيبلوغرافية
العنوان: The Effect of Calcium hydroxide, Glass Ionomer and light cured resin modified calcium silicate on viability, proliferation and differentiation of stem cells from human exfoliated deciduous teeth.
المؤلفون: Shalaby RA; Department of Pediatric Dentistry and Public Health, Zagazig University, Zagazig, Egypt. rashalaby@zu.edu.eg., Abdel-Aziz AM; Department of Pediatric Dentistry and Public Health, Ain Shams University, Cairo, Egypt., Rashed LA; Department of Medical Biochemistry and Molecular Biology, Cairo University, Cairo, Egypt., Radwan MZ; Department of Pediatric Dentistry and Public Health, Ain Shams University, Cairo, Egypt.
المصدر: BMC oral health [BMC Oral Health] 2023 Oct 06; Vol. 23 (1), pp. 721. Date of Electronic Publication: 2023 Oct 06.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101088684 Publication Model: Electronic Cited Medium: Internet ISSN: 1472-6831 (Electronic) Linking ISSN: 14726831 NLM ISO Abbreviation: BMC Oral Health Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, [2001-
مواضيع طبية MeSH: Calcium Hydroxide*/pharmacology , Calcium Hydroxide*/therapeutic use , Calcium Compounds*/pharmacology, Humans ; Silicates/pharmacology ; Cell Differentiation ; Stem Cells ; Tooth, Deciduous ; Cell Proliferation ; Dental Pulp
مستخلص: Background: Vital pulp therapy, based on the use of stem cells, has promising research and therapeutic applications in dentistry. It is essential to understand the direct effect of capping materials on the dental pulp stem cells of primary teeth, which contribute to the healing powers of the tooth. The aim of this study is to evaluate the effect of different capping materials (Calcium Hydroxide (DyCal®) - Glass Ionomer (Fuji IX®) and light-cured resin modified calcium silicate (TheraCal LC®)) on the viability, proliferation, and differentiation of stem cells from human exfoliated deciduous teeth (SHEDs).
Methods: SHEDs were isolated from extracted primary teeth, then divided into four groups and each of the capping materials were applied to the stem cells as follows: group I the controls, group II with Ca(OH)2, group III with the GIC, and group IV with the Theracal LC. For all groups assessment of viability and proliferation rate was done using the MTT cell proliferation assay. Also, Differentiation was evaluated by measuring the gene expression of Alkaline phosphatase enzyme activity (ALP) and Dentin matrix protein-1 (DMP1) through quantitative real-time PCR. Morphological assessment was conducted using Alizarin Red S staining. All evaluations were performed after 7 and 14 days of culture.
Results: TheraCal LC showed the highest values of proliferation, which was significant only compared to the control group after 2 weeks (p = 0.012). After one week, TheraCal LC showed the highest significant values of ALP and DMP1 compared to all other groups (p < 0.001).
Conclusion: The three materials under study are biocompatible, maintain viability, and stimulate the proliferation and differentiation of SHEDs. However, TheraCal LC allows better proliferation of SHEDs than Dycal Ca(OH)2 and Fuji IX GIC.
(© 2023. BioMed Central Ltd., part of Springer Nature.)
References: Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K. Stem cells in dentistry - Part I: Stem cell sources. J Prosthodont Res. 2012;56(3):151–65. https://doi.org/10.1016/j.jpor.2012.06.001 . (PMID: 10.1016/j.jpor.2012.06.00122796367)
Gugliandolo A, Fonticoli L, Trubiani O, Rajan TS, Marconi GD, Bramanti P, Mazzon E, Pizzicannella J, Diomede F. Oral bone tissue regeneration: mesenchymal stem cells, secretome, and biomaterials. Int J Mol Sci. 2021;22(10):5236. https://doi.org/10.3390/ijms22105236 . (PMID: 10.3390/ijms22105236340634388156243)
Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther. 2018;18(2):187–96. https://doi.org/10.1080/14712598.2018.1402004 . (PMID: 10.1080/14712598.2018.140200429110535)
Sultan N, Amin LE, Zaher AR, Scheven BA, Grawish ME. Dental pulp stem cells: Novel cell-based and cell-free therapy for peripheral nerve repair. World J Stomatol. 2019;7(1):1–19. https://doi.org/10.5321/wjs.v7.i1.1 . (PMID: 10.5321/wjs.v7.i1.1)
Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: Stem cells from human exfoliated deciduous teeth. 2003. Available: https://www.pnas.org/doi/abs/10.1073/pnas.0937635100 .
Attik GN, Villat C, Hallay F, Pradelle-Plasse N, Bonnet H, Moreau K, Colon P, Grosgogeat B. In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblasts cells: Biodentine™ versus MTA®. Int Endod J. 2014;47(12):1133–41. https://doi.org/10.1111/iej.12261 . (PMID: 10.1111/iej.1226124517569)
Sanusi SY, Al-Bataynehb OB. Pulp therapy of primary dentition; its relevance despite insufficient histological evidence: a review. Iran Endod J. 2023;18(1):15–40. https://doi.org/10.22037/iej.v18i1.34931 . (PMID: 10.22037/iej.v18i1.34931367514089900146)
Coll JA, Seale NS, Vargas K, Marghalani AA, Al Shamali S, Graham L. Primary tooth vital pulp therapy: a systematic review and meta-analysis. Pediatr Dent. 2017;39(1):16–123. (PMID: 28292337)
Qureshi A. Recent advances in pulp capping materials: an overview. J Clin Diagn Res. 2014. https://doi.org/10.7860/JCDR/2014/7719.3980 . (PMID: 10.7860/JCDR/2014/7719.3980254784694253287)
Conde CM, Demarco FF, Casagrande L, Alcazar JC, Nör JE, Tarquinio SBC. Influence of Poly-L-Lactic acid scaffold’s pore size on the proliferation and differentiation of dental pulp stem cells. Braz Dent J. 2015;26(2):93–8. https://doi.org/10.1590/0103-6440201300032 . (PMID: 10.1590/0103-644020130003225831096)
Du R, Wu T, Liu W, Li L, Jiang L, Peng W, Chang J, Zhu Y. Role of the extracellular signal-regulated kinase 1/2 pathway in driving tricalcium silicate-induced proliferation and biomineralization of human dental pulp cells in vitro. J Endod. 2013;39(8):1023–9. https://doi.org/10.1016/j.joen.2013.03.002 . (PMID: 10.1016/j.joen.2013.03.00223880270)
Laurent P, Camps J, About I. BiodentineTM induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45(5):439–48. https://doi.org/10.1111/j.1365-2591.2011.01995.x . (PMID: 10.1111/j.1365-2591.2011.01995.x22188368)
Silva EJNL, Senna PM, De-Deus G, Zaia AA. Cytocompatibility of Biodentine using a three-dimensional cell culture model. Int Endod J. 2016;49(6):574–80. https://doi.org/10.1111/iej.12485 . (PMID: 10.1111/iej.1248526100656)
Estrela C, Pimenta C, Ito I, Bammann LL. In Vitro Determination of Direct Antimicrobial Effect of Calcium Hydroxide, vol 24. 1998.
Modena KC, Casas-ApaycoAtta LCMT, Costa CA, Hebling J, Sipert CR, Navarro MF, Santos CF. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci. 2009;17(6):544–54. https://doi.org/10.1590/s1678-77572009000600002 . (PMID: 10.1590/s1678-77572009000600002200274244327511)
Croll TP. Rapid-setting encapsulated glass-ionomer restorative cement. Compend Contin Educ Dent (Jamesburg, NJ: 1995). 2001;22(5):442–8.
Gandolfi MG, Siboni F, Prati C. Chemical-physical properties of TheraCal, a novel light-curable MTA-like material for pulp capping. Int Endod J. 2012;45(6):571–9. https://doi.org/10.1111/j.1365-2591.2012.02013.x . (PMID: 10.1111/j.1365-2591.2012.02013.x22469093)
Almushayt A, Narayanan K, Zaki AE, George A. Dentin matrix protein 1 induces cytodifferentiation of dental pulp stem cells into odontoblasts. Gene Ther. 2006;13(7):611–20. https://doi.org/10.1038/sj.gt.3302687 . (PMID: 10.1038/sj.gt.330268716319946)
Yasuda Y, Ohtomo E, Tsukuba T, Okamoto K, Saito T. Carbon dioxide laser irradiation stimulates mineralization in rat dental pulp cells. Int Endod J. 2009;42(10):940–6. https://doi.org/10.1111/j.1365-2591.2009.01598.x . (PMID: 10.1111/j.1365-2591.2009.01598.x19751293)
Park BW, Hah YS, Choi MJ, Ryu YM, Lee SG, Kim DR, Kim JR, Byun JH. In vitro osteogenic differentiation of cultured human dental papilla-derived cells. J Oral Maxillofac Surg. 2009;67(3):507–14. https://doi.org/10.1016/j.joms.2008.08.037 . (PMID: 10.1016/j.joms.2008.08.03719231773)
Hong D, Chen HX, Yu HQ, Liang Y, Wang C, Lian QQ, Deng HT, Ge RS. Morphological and proteomic analysis of early stage of osteoblast differentiation in osteoblastic progenitor cells. Exp Cell Res. 2010;316(14):2291–300. https://doi.org/10.1016/j.yexcr.2010.05.011 . (PMID: 10.1016/j.yexcr.2010.05.011204833544580249)
van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods. 1994;174(1–2):311–20. https://doi.org/10.1016/0022-1759(94)90034-5 . (PMID: 10.1016/0022-1759(94)90034-58083535)
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262 . (PMID: 10.1006/meth.2001.126211846609)
Tsai AI, Hong H, Lin W, Fu J, Chang C, Wang I, Huang W, Weng C, Hsu C, Yen T. Isolation of mesenchymal stem cells from human deciduous teeth pulp. Biomed Res Int. 2017;2017:1–9. https://doi.org/10.1155/2017/2851906 . (PMID: 10.1155/2017/2851906)
Vizoso F, Eiro N, Costa L, Esparza P, Landin M, Diaz-Rodriguez P, Schneider J, Perez-Fernandez R. Mesenchymal stem cells in homeostasis and systemic diseases: hypothesis, evidences, and therapeutic opportunities. Int J Mol Sci. 2019;20(15):3738. https://doi.org/10.3390/ijms20153738 . (PMID: 10.3390/ijms20153738313701596696100)
Zeitlin BD. Banking on teeth – Stem cells and the dental office. Biomed J. 2020;43(2):124–33. https://doi.org/10.1016/j.bj.2020.02.003 . (PMID: 10.1016/j.bj.2020.02.003323814627283549)
Kim Y, Lee D, Song D, Kim H-M, Kim S-Y. Biocompatibility and bioactivity of set direct pulp capping materials on human dental pulp stem cells. Materials. 2020;13(18):3925. https://doi.org/10.3390/ma13183925 . (PMID: 10.3390/ma13183925328998777558537)
Fujita M, Mikuni-Takagaki Y, Komori R, Okubo K, Yasuda M, Kimoto S. Effects of pre-reacted glass-ionomer cement on the viability and odontogenic differentiation of human dental pulp cells derived from deciduous teeth. Pediatr Dent J. 2016;26(2):74–82. https://doi.org/10.1016/j.pdj.2016.02.003 . (PMID: 10.1016/j.pdj.2016.02.003)
Orsini G, Ruggeri A, Mazzoni A, Putignano A, Nato F, Manzoli L. A review of the nature, role and function of dentin non-collagenous proteins, vol. part 1. 2012.
Araújo LB, Cosme-Silva L, Fernandes AP, Oliveira TM, Cavalcanti BdN, Gomes Filho JE, Sakai VT. Effects of mineral trioxide aggregate, Biodentine TM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth. J Appl Oral Sci. 2018;26:e20160629. https://doi.org/10.1590/1678-7757-2016-0629 . (PMID: 10.1590/1678-7757-2016-0629294123655777405)
فهرسة مساهمة: Keywords: Calcium hydroxide; Differentiation; Glass ionomer cement; Primary teeth; Proliferation; SHEDs; TheraCal LC; Vital pulp therapy
المشرفين على المادة: 54479-90-2 (Dycal)
PF5DZW74VN (Calcium Hydroxide)
0 (TheraCal)
S4255P4G5M (calcium silicate)
0 (glass ionomer)
0 (Calcium Compounds)
0 (Silicates)
تواريخ الأحداث: Date Created: 20231006 Date Completed: 20231102 Latest Revision: 20231118
رمز التحديث: 20231118
مُعرف محوري في PubMed: PMC10557230
DOI: 10.1186/s12903-023-03429-6
PMID: 37803363
قاعدة البيانات: MEDLINE
الوصف
تدمد:1472-6831
DOI:10.1186/s12903-023-03429-6