دورية أكاديمية

An impact evaluation of conservation investments targeting long-distance migratory species.

التفاصيل البيبلوغرافية
العنوان: An impact evaluation of conservation investments targeting long-distance migratory species.
المؤلفون: Donlan CJ; Advanced Conservation Strategies, Midway, Utah, USA.; Cornell Laboratory of Ornithology, Ithaca, New York, USA., Eusse-González D; Asociación para el Estudio y Conservación de las Aves Acuáticas en Colombia (Calidris), Cali, Colombia., Luque GM; Advanced Conservation Strategies, Midway, Utah, USA., Reiter ME; Point Blue Conservation Science, Petaluma, California, USA., Ruiz-Gutierrez V; Cornell Laboratory of Ornithology, Ithaca, New York, USA., Allen MC; Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA., Johnston-González R; Asociación para el Estudio y Conservación de las Aves Acuáticas en Colombia (Calidris), Cali, Colombia., Robinson OJ; Cornell Laboratory of Ornithology, Ithaca, New York, USA., Fernández G; Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, México., Palacios E; Centro de Investigación Científica y de Educación Superior de Ensenada - Unidad La Paz, La Paz, México., Valenzuela J; Centro de Estudio y Conservación del Patrimonio Natural (CECPAN), Ancud, Chile.
المصدر: Conservation biology : the journal of the Society for Conservation Biology [Conserv Biol] 2024 Jun; Vol. 38 (3), pp. e14194. Date of Electronic Publication: 2023 Dec 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology Country of Publication: United States NLM ID: 9882301 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1523-1739 (Electronic) Linking ISSN: 08888892 NLM ISO Abbreviation: Conserv Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, MA : Blackwell Publishing, Inc. on behalf of the Society for Conservation Biology
Original Publication: Boston, Mass. : Blackwell Scientific Publications,
مواضيع طبية MeSH: Conservation of Natural Resources*/methods , Birds*/physiology , Animal Migration*, Animals ; Population Dynamics
مستخلص: We evaluated the impact of a philanthropic program investing in the conservation of sites along the Pacific Americas Flyway, which spans >16,000 km of coastline and is used by millions of shorebirds. Using a quasi-experimental, mixed methods approach, we estimated what would have happened to shorebird populations at 17 wintering sites without the sustained and additional investment they received. We modeled shorebird populations across the entire flyway and at sites with and without investment. Combining shorebird abundance estimates with a land-cover classification model, we used the synthetic control method to create counterfactuals for shorebird trends at the treatment sites. We found no evidence of an overall effect across three outcome variables. Species- and site-level treatment effects were heterogeneous, with a few cases showing evidence of a positive effect, including a site with a high level of overall investment. Results suggest six shorebirds declined across the entire flyway, including at many Latin American sites. However, the percentage of flyway populations present at the sites remained stable, and the percentage at the treatment sites was higher (i.e., investment sites) than at control sites. Multiple mechanisms behind our results are possible, including that investments have yet to mitigate impacts and negative impacts at other sites are driving declines at the treatment sites. A limitation of our evaluation is the sole focus on shorebird abundance and the lack of data that prohibits the inclusion of other outcome variables. Monitoring infrastructure is now in place to design a more robust and a priori shorebird evaluation framework across the entire flyway. With this framework, it will prove easier to prioritize limited dollars to result in the most positive conservation outcomes.
(© 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.)
References: Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. Journal of Economic Literature, 59, 391–425. https://doi.org/10.1257/jel.20191450.
Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California's tobacco control program. Journal of the American statistical Association, 105, 493–505. https://doi.org/10.1198/jasa.2009.ap08746.
Abadie, A., Diamond, A., & Hainmueller, J. (2011). Synth: An R package for synthetic control methods in comparative case studies. Journal of Statistical Software, 42, 1–17.
Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative politics and the synthetic control method. American Journal of Political Science, 59, 495–510. https://doi.org/10.1111/ajps.12116.
Adams, V. M., Barnes, M., & Pressey, R. L. (2019). Shortfalls in conservation evidence: Moving from ecological effects of interventions to policy evaluation. One Earth, 1, 62–75. https://doi.org/10.1016/j.oneear.2019.08.017.
Adhikari, B. (2022). A guide to using the synthetic control method to quantify the effects of shocks, policies, and shocking policies. The American Economist, 67, 46–63. https://doi.org/10.1177/05694345211019714.
Adhikari, B., & Alm, J. (2016). Evaluating the economic effects of flat tax reforms using synthetic control methods. Southern Economic Journal, 83, 437–463. https://doi.org/10.1002/soej.12152.
Baylis, K., Honey Rosés, J., Börner, J., Corbera, E., Ezzine de Blas, D., Ferraro, P. J., Lapeyre, R., Persson, U. M., Pfaff, A., & Wunder, S. (2016). Mainstreaming impact evaluation in nature conservation. Conservation Letters, 9, 58–64. https://doi.org/10.1111/conl.12180.
Brawley, A. H., Warren, R. S., & Askins, R. A. (1998). Bird use of restoration and reference marshes within the Barn Island Wildlife Management Area, Stonington, Connecticut, USA. Environmental Management, 22, 625–633. https://doi.org/10.1007/s002679900134.
Burger, J., & Niles, L. (2013). Shorebirds and stakeholders: Effects of beach closure and human activities on shorebirds at a New Jersey coastal beach. Urban Ecosystems, 16, 657–673. https://doi.org/10.1007/s11252‐012‐0269‐9.
Dai, W., Goodale, E., He, R., Mammides, C., Liu, S., Zhou, L., Tang, S., Su, B., Lao, X., & Jiang, A. (2021). An eco‐compensation policy increases shorebird diversity during the non‐farming period for aquaculture. Wetlands, 41, 1–9. https://doi.org/10.1007/s13157‐021‐01397‐7.
David and Lucile Packard Foundation. (2019). Marine birds strategy. The David and Lucile Packard Foundation.
Donnelly, J. P., King, S. L., Silverman, N. L., Collins, D. P., Carrera Gonzalez, E. M., Lafón Terrazas, A., & Moore, J. N. (2020). Climate and human water use diminish wetland networks supporting continental waterbird migration. Global Change Biology, 26, 2042–2059. https://doi.org/10.1111/gcb.15010.
Ferraro, P. J., & Hanauer, M. M. (2014). Advances in measuring the environmental and social impacts of environmental programs. Annual Review of Environment and Resources, 39, 495–517. https://doi.org/10.1146/annurev‐environ‐101813‐013230.
Ferraro, P. J., & Pattanayak, S. K. (2006). Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS Biology, 4, e105. https://doi.org/10.1371/journal.pbio.0040105.
Fink, D., Auer, T., Johnston, A., Strimas‐Mackey, M.Ligocki, S., Robinson, O., Hochachka, W., Jaromczyk, L., Rodewald, A., Wood, C., Davies, I., & Spencer, A. (2020). eBird status and trends [Data Version: 2019; Released: 2020]. Cornell Lab of Ornithology. https://doi.org/10.2173/ebirdst.2019.
GADM. (2022). GADM data [Version 4.0.4]. GADM. https://gadm.org.
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Gibson, D., Chaplin, M. K., Hunt, K. L., Friedrich, M. J., Weithman, C. E., Addison, L. M., Cavalieri, V., Coleman, S., Cuthbert, F. J., & Fraser, J. D. (2018). Impacts of anthropogenic disturbance on body condition, survival, and site fidelity of nonbreeding Piping Plovers. The Condor: Ornithological Applications, 120, 566–580. https://doi.org/10.1650/CONDOR‐17‐148.1.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary‐scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
Hooten, M. B., & Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. Ecological Monographs, 85, 3–28. https://doi.org/10.1890/14‐0661.1.
International Union for Conservation of Nature (IUCN). (2021). The IUCN red list of threatened species [Version 2021‐3]. IUCN. https://www.iucnredlist.org.
Johnston, A., Auer, T., Fink, D., Strimas‐Mackey, M., Iliff, M., Rosenberg, K., Brown, S., Lanctot, R., Rodewald, A., & Kelling, S. (2020). Comparing abundance distributions and range maps in spatial conservation planning for migratory species. Ecological Applications, 30, e02058. https://doi.org/10.1002/eap.2058.
Johnston, A., Fink, D., Reynolds, M. D., Hochachka, W. M., Sullivan, B. L., Bruns, N. E., Hallstein, E., Merrifield, M. S., Matsumoto, S., & Kelling, S. (2015). Abundance models improve spatial and temporal prioritization of conservation resources. Ecological Applications, 25, 1749–1756. https://doi.org/10.1890/14‐1826.1.
Kéry, M. (2010). Introduction to WinBUGS for ecologists: Bayesian approach to regression, ANOVA, mixed models and related analyses. Academic Press.
Myers, J. P., Morrison, R. I. G., Antas, P. Z., Harrington, B. A., Lovejoy, T. E., Sallaberry, M., Senner, S. E., & Tarak, A. (1987). Conservation strategy for migratory species. American Scientist, 75, 19–26.
Palacios, E., Vargas, J., Fernández, G., & Reiter, M. E. (2022). Impact of human disturbance on the abundance of non‐breeding shorebirds in a subtropical wetland. Biotropica, 54, 1160–1169. https://doi.org/10.1111/btp.13139.
Piersma, T. (2012). What is habitat quality? Dissecting a research portfolio on shorebirds. In Birds and habitat: Relationships in changing landscapes (pp. 383–407). Cambridge University Press.
Ramsar. (2013). The Ramsar convention manual: A guide to the convention on wetlands (6th ed.). Ramsar Convention Secretariat,.
Reiter, M., Palacios, E., Eusse‐Gonzalez, D., Johnston González, R., Davidson, P., Bradley, D., Clay, R., Strum, K., Chu, J., & Barbaree, B. (2020). A monitoring framework for assessing threats to nonbreeding shorebirds on the Pacific Coast of the Americas. Avian Conservation and Ecology, 15, 7. https://doi.org/10.5751/ACE‐01620‐150207.
Robinson, O. J., Ruiz‐Gutierrez, V., Reynolds, M. D., Golet, G. H., Strimas‐Mackey, M., & Fink, D. (2020). Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models. Diversity and Distributions, 26, 976–986. https://doi.org/10.1111/ddi.13068.
Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., Stanton, J. C., Panjabi, A., Helft, L., & Parr, M. (2019). Decline of the North American avifauna. Science, 366, 120–124. https://doi.org/10.1126/science.aaw1313.
Roy, D. P., Kovalskyy, V., Zhang, H., Vermote, E. F., Yan, L., Kumar, S., & Egorov, A. (2016). Characterization of Landsat‐7 to Landsat‐8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57–70. https://doi.org/10.1016/j.rse.2015.12.024.
Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G., & Fuller, R. A. (2014). Conserving mobile species. Frontiers in Ecology and the Environment, 12, 395–402. https://doi.org/10.1890/130237.
Senner, S. E., Andres, B. A., & Gates, H. R. (Eds.). (2016). Pacific Americas shorebird conservation strategy. National Audubon Society.
Sheehan, D. K., Gregory, R. D., Eaton, M. A., Bubb, P. J., & Chenery, A. M. (2010). The wild bird index—Guidance for national and regional use. UNEP‐WCMC.
Sills, E., Pfaff, A., Andrade, L., Kirkpatrick, J., & Dickson, R. (2020). Investing in local capacity to respond to a federal environmental mandate: Forest & economic impacts of the Green Municipality Program in the Brazilian Amazon. World Development, 129, 104891.
Sills, E. O., Herrera, D., Kirkpatrick, A. J., Brandão, A., Jr., Dickson, R., Hall, S., Pattanayak, S., Shoch, D., Vedoveto, M., & Young, L. (2015). Estimating the impacts of local policy innovation: The synthetic control method applied to tropical deforestation. PLoS ONE, 10, e0132590. https://doi.org/10.1371/journal.pone.0132590.
Smith, P. A., Smith, A. C., Andres, B., Francis, C. M., Harrington, B., Friis, C., Morrison, R. G., Paquet, J., Winn, B., & Brown, S. (2023). Accelerating declines of North America's shorebirds signal the need for urgent conservation action. Ornithological Applications.
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., & Robertson, J. (2007). Marine Ecoregions of the World: A bioregionalization of coastal and shelf areas. Bioscience, 59, 573–583. https://doi.org/10.1641/B570707.
Strimas‐Mackey, M., Hochachka, W. M., Ruiz‐Gutierrez, V., Robinson, O. J., Miller, E. T., Auer, T., Kelling, S., Fink, D., & Johnston, A. (2020). Best practices for using eBird data [Version 1.0]. Cornell Lab of Ornithology.
Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., Damoulas, T., Dhondt, A. A., Dietterich, T., & Farnsworth, A. (2014). The eBird enterprise: An integrated approach to development and application of citizen science. Biological Conservation, 169, 31–40. https://doi.org/10.1016/j.biocon.2013.11.003.
Ward, D. H., Dau, C. P., Tibbitts, T. L., Sedinger, J. S., Anderson, B. A., & Hines, J. E. (2009). Change in abundance of Pacific brant wintering in Alaska: Evidence of a climate warming effect? Arctic, 62, 301–311.
Wauchope, H. S., Jones, J. P., Geldmann, J., Simmons, B. I., Amano, T., Blanco, D. E., Fuller, R. A., Johnston, A., Langendoen, T., & Mundkur, T. (2022). Protected areas have a mixed impact on waterbirds, but management helps. Nature, 605, 103–107. https://doi.org/10.1038/s41586‐022‐04617‐0.
Zhang, J., Zhu, J., Liu, Y., Lu, N., & Fang, W. (2022). The economic impact of payments for water‐related ecosystem services on protected areas: A synthetic control analysis. Water Resources Management, 36, 1535–1551. https://doi.org/10.1007/s11269‐022‐03099‐z.
معلومات مُعتمدة: David and Lucile Packard Foundation
فهرسة مساهمة: Keywords: Pacific Americas Flyway; Ruta Migratoria del Pacífico‐Américas; aves playeras; contrafactual; counterfactual; evaluación de impacto; impact evaluation; método de control sintético; shorebirds; synthetic control method
Local Abstract: [Publisher, Spanish; Castilian] Evaluación del impacto de la inversión para la conservación enfocada en especies migratorias de largo recorrido Resumen Evaluamos el impacto de un programa filantrópico que invierte en la conservación de sitios a lo largo de la Ruta Migratoria Pacífico‐Américas, la cual abarca >16,000 km de la línea costera y millones de aves playeras la usan. Estimamos con una estrategia cuasiexperimental y de métodos mixtos lo que habría pasado con las poblaciones de estas aves en 17 sitios invernales sin la inversión adicional y continua que recibieron. Modelamos estas poblaciones en toda la ruta y en sitios con y sin inversión. Combinamos las estimaciones de aves playeras con el modelo de clasificación de la cobertura del suelo y usamos el método de control sintético para crear contrafactuales para las tendencias de las aves playeras en sitios de tratamiento. No encontramos evidencia alguna de un efecto generalizado en las tres variables de los resultados. Los efectos del tratamiento de especies y de sitio fueron heterogéneos, con unos cuantos casos que mostraron evidencia de un efecto positivo, incluido un sitio con un nivel elevado de inversión general. Los resultados sugieren que seis especies de aves playeras declinaron a lo largo de toda la ruta, incluyendo en varios sitios de América Latina. Sin embargo, el porcentaje de poblaciones de la ruta presentes en los sitios permaneció estable y el porcentaje en los sitios de tratamiento (sitios de inversión) fue más elevado que en los sitios control. Muchos mecanismos son posibles detrás de nuestros resultados, incluidas las inversiones que todavía no han mitigado impactos y los impactos negativos en otros sitios que están causando las declinaciones en los sitios de tratamiento. Una limitación en nuestra evaluación es el enfoque único en la abundancia de aves playeras y la falta de datos que impiden la inclusión de otras variables de los resultados. El monitoreo de la infraestructura ahora está en una posición en la que puede diseñar un marco de evaluación más robusto y a priori de las aves playeras a lo largo de toda la ruta. Con este marco, será más fácil priorizar los dólares limitados para que los resultados de conservación sean lo más positivos posible.
تواريخ الأحداث: Date Created: 20231009 Date Completed: 20240529 Latest Revision: 20240529
رمز التحديث: 20240530
DOI: 10.1111/cobi.14194
PMID: 37811734
قاعدة البيانات: MEDLINE
الوصف
تدمد:1523-1739
DOI:10.1111/cobi.14194