دورية أكاديمية

Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC.

التفاصيل البيبلوغرافية
العنوان: Measurements of aerosol microphysical and chemical properties in the central Arctic atmosphere during MOSAiC.
المؤلفون: Heutte B; Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland., Bergner N; Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland., Beck I; Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland., Angot H; Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland.; Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000, Grenoble, France., Dada L; Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland.; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland., Quéléver LLJ; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Laurila T; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Boyer M; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Brasseur Z; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Daellenbach KR; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland., Henning S; Leibniz Institute for Tropospheric Research, Permoserstrasse 15, 04138, Leipzig, Germany., Kuang C; Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA., Kulmala M; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Lampilahti J; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Lampimäki M; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Petäjä T; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Shupe MD; Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.; National Oceanic and Atmospheric Administration, Physical Sciences Laboratory, Boulder, CO, USA., Sipilä M; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland., Uin J; Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA., Jokinen T; Institute for Atmospheric and Earth System Research, INAR/Physics, Faculty of Science, University of Helsinki, 00014, Helsinki, Finland.; Climate and Atmosphere Research Centre (CARE-C), The Cyprus Institute, P.O. Box 27456, Nicosia, 1645, Cyprus., Schmale J; Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, Sion, Switzerland. julia.schmale@epfl.ch.
المصدر: Scientific data [Sci Data] 2023 Oct 11; Vol. 10 (1), pp. 690. Date of Electronic Publication: 2023 Oct 11.
نوع المنشور: Dataset; Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101640192 Publication Model: Electronic Cited Medium: Internet ISSN: 2052-4463 (Electronic) Linking ISSN: 20524463 NLM ISO Abbreviation: Sci Data Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, 2014-
مستخلص: The Arctic environment is transforming rapidly due to climate change. Aerosols' abundance and physicochemical characteristics play a crucial, yet uncertain, role in these changes due to their influence on the surface energy budget through direct interaction with solar radiation and indirectly via cloud formation. Importantly, Arctic aerosol properties are also changing in response to climate change. Despite their importance, year-round measurements of their characteristics are sparse in the Arctic and often confined to lower latitudes at Arctic land-based stations and/or short high-latitude summertime campaigns. Here, we present unique aerosol microphysics and chemical composition datasets collected during the year-long Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, in the central Arctic. These datasets, which include aerosol particle number concentrations, size distributions, cloud condensation nuclei concentrations, fluorescent aerosol concentrations and properties, and aerosol bulk chemical composition (black carbon, sulfate, nitrate, ammonium, chloride, and organics) will serve to improve our understanding of high-Arctic aerosol processes, with relevance towards improved modelling of the future Arctic (and global) climate.
(© 2023. Springer Nature Limited.)
References: Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 1–10 (2022).
AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts. Summary for Policy-makers, Tech. rep., Arctic Monitoring and Assessment Programme (AMAP). https://www.amap.no/documents/doc/arctic-climate-change-update-2021-key-trends-and-impacts.-summary-for-policy-makers/3508 (2021).
IPCC. Global Warming of 1.5 o C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (2018).
Overland, J. E. Rare events in the Arctic. Clim. Change 168, 27 (2021).
Walsh, J. E. et al. Extreme weather and climate events in northern areas: A review. Earth-Sci. Rev. 209, 103324 (2020).
Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).
Li, H. et al. Overlooked organic vapor emissions from thawing Arctic permafrost. Environ. Res. Lett. 15, 104097 (2020).
Moon, T. A. et al. The Expanding Footprint of Rapid Arctic Change. Earths Future 7, 212–218 (2019).
Taylor, P. C. et al. A Decomposition of Feedback Contributions to Polar Warming Amplification. J. Clim. 26, 7023–7043 (2013).
Hall, A. The Role of Surface Albedo Feedback in Climate. J. Clim. 17, 1550–1568 (2004).
Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).
Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 77, 85–96 (2011).
Quinn, P. K. et al. Short-lived pollutants in the Arctic: their climate impact and possible mitigation strategies. Atmospheric Chem. Phys. 8, 1723–1735 (2008).
Law, K. S. & Stohl, A. Arctic Air Pollution: Origins and Impacts. Science 315, 1537–1540 (2007). (PMID: 17363665)
AMAP. Impacts of Short-lived Climate Forcers on Arctic Climate, Air Quality, and Human Health. Summary for Policy-makers, Arctic Monitoring and Assessment Programme (AMAP). https://www.amap.no/documents/doc/impacts-of-short-lived-climate-forcers-on-arctic-climate-air-quality-and-human-health.-summary-for-policy-makers/3512 (2021).
Schmale, J., Zieger, P. & Ekman, A. M. L. Aerosols in current and future Arctic climate. Nat. Clim. Change 11, 95–105 (2021).
Moschos, V. et al. Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface. Environ. Res. Lett. 17, 034032 (2022).
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change., (2013).
IPCC. Technical summary. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the sixth Assessment Report of the Intergovernmental Panal on Climate Change. (2021).
Willis, M. D., Leaitch, W. R. & Abbatt, J. P. D. Processes Controlling the Composition and Abundance of Arctic Aerosol. Rev. Geophys. 56, 621–671 (2018).
Abbatt, J. P. D. et al. Overview paper: New insights into aerosol and climate in the Arctic. Atmospheric Chem. Phys. 19, 2527–2560 (2019).
Schmale, J. et al. Pan-Arctic seasonal cycles and long-term trends of aerosol properties from 10 observatories. Atmospheric Chem. Phys. 22, 3067–3096 (2022).
Adachi, K. et al. Compositions and mixing states of aerosol particles by aircraft observations in the Arctic springtime, 2018. Atmospheric Chem. Phys. 21, 3607–3626 (2021).
Willis, M. D. et al. Aircraft-based measurements of High Arctic springtime aerosol show evidence for vertically varying sources, transport and composition. Atmospheric Chem. Phys. 19, 57–76 (2019).
Leck, C. et al. Overview of the atmospheric research program during the International Arctic Ocean Expedition of 1991 (IAOE-91) and its scientific results. Tellus B Chem. Phys. Meteorol. 48, 136–155 (1996).
Leck, C., Nilsson, E. D., Bigg, E. K. & Bäcklin, L. Atmospheric program on the Arctic Ocean Expedition 1996 (AOE-96): An overview of scientific goals, experimental approach, and instruments. J. Geophys. Res. Atmospheres 106, 32051–32067 (2001).
Leck, C., Tjernström, M., Matrai, P., Swietlicki, E. & Bigg, K. Can marine micro-organisms influence melting of the Arctic pack ice? Eos Trans. Am. Geophys. Union 85, 25–32 (2004).
Tjernström, M. et al. The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design. Atmospheric Chem. Phys. 14, 2823–2869 (2014).
Baccarini, A. et al. Frequent new particle formation over the high Arctic pack ice by enhanced iodine emissions. Nat. Commun. 11, 4924 (2020). (PMID: 330048127529815)
Boyer, M. et al. A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Atmospheric Chem. Phys. 23, 389–415 (2023).
Dada, L. et al. A central arctic extreme aerosol event triggered by a warm air-mass intrusion. Nat. Commun. 13, 1–15 (2022).
Knust, R. Polar Research and Supply Vessel POLARSTERN Operated by the Alfred-Wegener-Institute. J. Large-Scale Res. Facil. JLSRF 3, A119–A119 (2017).
Shupe, M. D. et al. Overview of the MOSAiC expedition: Atmosphere. Elem. Sci. Anthr. 10, 00060 (2022).
Quinn, P. K. et al. Arctic haze: current trends and knowledge gaps. Tellus B 59, 99–114 (2007).
Shaw, G. E. The Arctic Haze Phenomenon. Bull. Am. Meteorol. Soc. 76, 2403–2413 (1995).
Croft, B. et al. Processes controlling the annual cycle of Arctic aerosol number and size distributions. Atmospheric Chem. Phys. 16, 3665–3682 (2016).
Moschos, V. et al. Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols. Nat. Geosci. 15, 196–202 (2022). (PMID: 353410768916957)
Karlsson, L. et al. Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition. J. Geophys. Res. Atmospheres 127, e2021JD036383 (2022).
WMO. WMO/GAW Aerosol Measurements Procedures, Guidelines and Recommendations. https://library.wmo.int/doc_num.php?explnum_id=3073 (2016).
Uin, J. et al. Atmospheric Radiation Measurement (ARM) Aerosol Observing Systems (AOS) for Surface-Based In Situ Atmospheric Aerosol and Trace Gas Measurements. J. Atmospheric Ocean. Technol. 36, 2429–2447 (2019).
Angot, H. et al. Year-round trace gas measurements in the central Arctic during the MOSAiC expedition. Sci. Data 9, 723 (2022). (PMID: 364340229700757)
von der Weiden, S.-L., Drewnick, F. & Borrmann, S. Particle Loss Calculator – a new software tool for the assessment of the performance of aerosol inlet systems. Atmospheric Meas. Tech. 2, 479–494 (2009).
Hegg, D. A., Hobbs, P. V., Gassó, S., Nance, J. D. & Rangno, A. L. Aerosol measurements in the Arctic relevant to direct and indirect radiative forcing. J. Geophys. Res. Atmospheres 101, 23349–23363 (1996).
Phinney, L. et al. Characterization of the aerosol over the sub-arctic north east Pacific Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 2410–2433 (2006).
Martin, M. et al. Cloud condensation nuclei closure study on summer arctic aerosol. Atmospheric Chem. Phys. 11, 11335–11350 (2011).
Schmale, J. et al. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition. Sci. Data 4, 170003 (2017). (PMID: 282912345349251)
Drinovec, L. et al. The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation. Atmospheric Meas. Tech. 8, 1965–1979 (2015).
Helin, A. et al. Variation of Absorption Ångström Exponent in Aerosols From Different Emission Sources. J. Geophys. Res. Atmospheres 126, e2020JD034094 (2021).
Cuesta-Mosquera, A. et al. Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities. Atmospheric Meas. Tech. 14, 3195–3216 (2021).
Fröhlich, R. et al. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection. Atmospheric Meas. Tech. 6, 3225–3241 (2013).
Backman, J. et al. On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic. Atmospheric Meas. Tech. 10, 5039–5062 (2017).
DeCarlo, P. F. et al. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Anal. Chem. 78, 8281–8289 (2006). (PMID: 17165817)
Canagaratna, M. R. et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26, 185–222 (2007). (PMID: 17230437)
Canagaratna, M. R. et al. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications. Atmospheric Chem. Phys. 15, 253–272 (2015).
Jimenez, J. L. et al. Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer. J. Geophys. Res. Atmospheres 108, (2003).
Ovadnevaite, J. et al. On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. J. Geophys. Res. Atmospheres 117, (2012).
Schmale, J. et al. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources. Atmospheric Chem. Phys. 13, 8669–8694 (2013).
Sueper, D., collaborators. ToF-AMS Data Analysis Software Webpage. http://cires1.colorado.edu/jimenez-group/wiki/index.php/ToF-AMS_Analysis_Software (2023).
Jayne, J. T. et al. Development of an Aerosol Mass Spectrometer for Size and Composition Analysis of Submicron Particles. Aerosol Sci. Technol. 33, 49–70 (2000).
Allan, J. D. et al. Quantitative sampling using an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation and error analysis: QUANTITATIVE AEROSOL MASS SPECTROMETER ANALYSIS, 1. J. Geophys. Res. Atmospheres 108, 4090 (2003).
Middlebrook, A. M., Bahreini, R., Jimenez, J. L. & Canagaratna, M. R. Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Sci. Technol. 46, 258–271 (2012).
Bahreini, R. et al. Organic aerosol formation in urban and industrial plumes near Houston and Dallas, Texas. J. Geophys. Res. Atmospheres 114, (2009).
Wiedensohler, A. et al. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions. Atmospheric Meas. Tech. 5, 657–685 (2012).
Savage, N. J. et al. Systematic characterization and fluorescence threshold strategies for the wideband integrated bioaerosol sensor (WIBS) using size-resolved biological and interfering particles. Atmospheric Meas. Tech. 10, 4279–4302 (2017).
Moallemi, A. et al. Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean. J. Geophys. Res. Atmospheres 126, e2021JD034811 (2021).
Perring, A. E. et al. Airborne observations of regional variation in fluorescent aerosol across the United States. J. Geophys. Res. Atmospheres 120, 1153–1170 (2015).
Roberts, G. C. & Nenes, A. A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements. Aerosol Sci. Technol. 39, 206–221 (2005).
Beck, I. et al. Automated identification of local contamination in remote atmospheric composition time series. Atmospheric Meas. Tech. 15, 4195–4224 (2022).
Beck, I., Quéléver, L., Laurila, T., Jokinen, T. & Schmale, J. Continuous corrected particle number concentration data in 10 sec resolution, measured in the Swiss aerosol container during MOSAiC 2019/2020. https://doi.org/10.1594/PANGAEA.941886 (2022).
Cai, J. et al. Size-segregated particle number and mass concentrations from different emission sources in urban Beijing. Atmospheric Chem. Phys. 20, 12721–12740 (2020).
Salcedo, D. et al. Characterization of ambient aerosols in Mexico City during the MCMA-2003 campaign with Aerosol Mass Spectrometry: results from the CENICA Supersite. Atmospheric Chem. Phys. 6, 925–946 (2006).
DeCarlo, P. F., Slowik, J. G., Worsnop, D. R., Davidovits, P. & Jimenez, J. L. Particle Morphology and Density Characterization by Combined Mobility and Aerodynamic Diameter Measurements. Part 1: Theory. Aerosol Sci. Technol. 38, 1185–1205 (2004).
Poulain, L. et al. Chemical mass balance of 300 °C non-volatile particles at the tropospheric research site Melpitz, Germany. Atmospheric Chem. Phys. 14, 10145–10162 (2014).
Lide, D. R. CRC Handbook of Chemistry and Physics, 85th Edition. (CRC Press, 2004).
Turpin, B. J. & Lim, H.-J. Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass. Aerosol Sci. Technol. 35, 602–610 (2001).
Park, K., Kittelson, D. B., Zachariah, M. R. & McMurry, P. H. Measurement of Inherent Material Density of Nanoparticle Agglomerates. J. Nanoparticle Res. 6, 267–272 (2004).
Nielsen, I. E. et al. Biogenic and anthropogenic sources of aerosols at the High Arctic site Villum Research Station. Atmospheric Chem. Phys. 19, 10239–10256 (2019).
Wiedensohler, A. et al. Mobility particle size spectrometers: Calibration procedures and measurement uncertainties. Aerosol Sci. Technol. 52, 146–164 (2018).
Zieger, P. et al. Revising the hygroscopicity of inorganic sea salt particles. Nat. Commun. 8, 15883 (2017). (PMID: 286711885500848)
Beck, I. et al. Pollution mask for the continuous corrected particle number concentration data in 1 min resolution, measured in the Swiss aerosol container during MOSAiC 2019/2020. https://doi.org/10.1594/PANGAEA.941335 (2022).
Nixdorf, U. et al. MOSAiC Extended Acknowledgement. EPIC3Zenodo https://doi.org/10.5281/zenodo.5541624 (2021).
Heutte, B. et al. Equivalent black carbon concentration in 10 minutes time resolution, measured in the Swiss container during MOSAiC 2019/2020. PANGAEA, https://doi.org/10.1594/PANGAEA.952251 (2022).
Heutte, B. et al. Aerosol optical absorption coefficients at seven wavelengths in 10 min resolution measured in the Swiss container during MOSAiC 2019/2020. PANGAEA, https://doi.org/10.1594/PANGAEA.961756 (2023).
Heutte, B. et al. Bulk size-resolved chemical composition and mass concentration of non-refractory submicron aerosols measured in the Swiss container during MOSAiC 2019/2020. PANGAEA, https://doi.org/10.1594/PANGAEA.961009 (2023).
Bergner, N. et al. Aerodynamic Particle Sizer spectrometer (APS) aerosol number concentrations, measured in the Swiss container during MOSAiC 2019/2020. PANGAEA, https://doi.org/10.1594/PANGAEA.960923 (2023).
Beck, I. et al. Wideband integrated bioaerosol sensor (WIBS) excited, fluorescent, and hyper-fluorescent particle number concentrations and normalized size distributions (dN/dlogDp) measured in the Swiss container during MOSAiC 2019/2020., PANGAEA, https://doi.org/10.1594/PANGAEA.961065 (2023).
Bergner, N. et al. Cloud Condensation Nuclei (CCN) concentrations measured in the Swiss container during MOSAiC 2019/2020., PANGAEA, https://doi.org/10.1594/PANGAEA.961131 (2023).
Beck, I., Quéléver, L., Laurila, T., Jokinen, T. & Schmale, J. Continuous corrected particle number concentration data in 10 sec resolution measured in the Swiss aerosol container using a whole air inlet during MOSAiC 2019/2020., PANGAEA, https://doi.org/10.1594/PANGAEA.961118 (2023).
Heutte, B. et al. Temperature and relative humidity in 10 min time resolution measured in the interstitial inlet of the Swiss container during MOSAiC 2019/2020. PANGAEA, https://doi.org/10.1594/PANGAEA.961008 (2023).
Heutte, B. et al. Temperature and relative humidity in 10 min time resolution measured in the total inlet of the Swiss container during MOSAiC 2019/2020. PANGAEA, https://doi.org/10.1594/PANGAEA.961007 (2023).
Beck, I. et al. Pollution mask for the continuous corrected particle number concentration data in 1 min time resolution measured in the Swiss aerosol container using a whole air inlet during MOSAiC 2019/2020., PANGAEA, https://doi.org/10.1594/PANGAEA.961120 (2023).
معلومات مُعتمدة: AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); AWI_PS122_00 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (Alfred-Wegener- Institute, Helmholtz Centre for Polar and Marine Research); 1010003826 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); 101003826 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); 101003826 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); 101003826 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020); DE-SC0022046 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy); DE-SC0022046 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy); DE-SC0022046 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy); DE-SC0019251 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy); DE-SC0019251 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy); DE-SC0019251 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy); DE-SC0022046 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy); 200021_188478 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation); 200021_188478 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation); 200021_188478 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337552 Academy of Finland (Suomen Akatemia); 333397 Academy of Finland (Suomen Akatemia); 337549 Academy of Finland (Suomen Akatemia)
تواريخ الأحداث: Date Created: 20231011 Date Completed: 20231013 Latest Revision: 20231117
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10567811
DOI: 10.1038/s41597-023-02586-1
PMID: 37821470
قاعدة البيانات: MEDLINE
الوصف
تدمد:2052-4463
DOI:10.1038/s41597-023-02586-1