دورية أكاديمية

Immunoglobulin superfamily member 3 is required for the vagal neural crest cell migration and enteric neuronal network organization.

التفاصيل البيبلوغرافية
العنوان: Immunoglobulin superfamily member 3 is required for the vagal neural crest cell migration and enteric neuronal network organization.
المؤلفون: Tanjore Ramanathan J; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland., Zárybnický T; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland., Filppu P; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland., Monzo HJ; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland., Monni O; Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland., Tervonen TA; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.; Finnish genome editing center (FinGEEC), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland., Klefström J; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.; Finnish Cancer Institute & FICAN South, Helsinki University Hospital (HUS), Helsinki, Finland., Kerosuo L; Neural Crest Development and Disease Unit, Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA. laura.kerosuo@nih.gov., Kuure S; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. satu.kuure@helsinki.fi.; GM-unit, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland. satu.kuure@helsinki.fi., Laakkonen P; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. pirjo.laakkonen@helsinki.fi.; iCAN Flagship Program, University of Helsinki, Helsinki, Finland. pirjo.laakkonen@helsinki.fi.; Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland. pirjo.laakkonen@helsinki.fi.
المصدر: Scientific reports [Sci Rep] 2023 Oct 11; Vol. 13 (1), pp. 17162. Date of Electronic Publication: 2023 Oct 11.
نوع المنشور: Journal Article; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Publishing Group, copyright 2011-
مواضيع طبية MeSH: Neural Crest* , Enteric Nervous System*/metabolism, Mice ; Animals ; Neurons/physiology ; Gastrointestinal Tract ; Intestine, Small ; Immunoglobulins/genetics ; Immunoglobulins/metabolism ; Cell Movement/physiology
مستخلص: The immunoglobulin (Ig) superfamily members are involved in cell adhesion and migration, complex multistep processes that play critical roles in embryogenesis, wound healing, tissue formation, and many other processes, but their specific functions during embryonic development remain unclear. Here, we have studied the function of the immunoglobulin superfamily member 3 (IGSF3) by generating an Igsf3 knockout (KO) mouse model with CRISPR/Cas9-mediated genome engineering. By combining RNA and protein detection methodology, we show that during development, IGSF3 localizes to the neural crest and a subset of its derivatives, suggesting a role in normal embryonic and early postnatal development. Indeed, inactivation of Igsf3 impairs the ability of the vagal neural crest cells to migrate and normally innervate the intestine. The small intestine of Igsf3 KO mice shows reduced thickness of the muscularis externa and diminished number of enteric neurons. Also, misalignment of neurons and smooth muscle cells in the developing intestinal villi is detected. Taken together, our results suggest that IGSF3 functions contribute to the formation of the enteric nervous system. Given the essential role of the enteric nervous system in maintaining normal gastrointestinal function, our study adds to the pool of information required for further understanding the mechanisms of gut innervation and etiology behind bowel motility disorders.
(© 2023. Springer Nature Limited.)
References: Copp, A. J., Greene, N. D. & Murdoch, J. N. The genetic basis of mammalian neurulation. Nat. Rev. Genet. 4, 784–793. https://doi.org/10.1038/nrg1181 (2003). (PMID: 10.1038/nrg118113679871)
Theveneau, E. & Mayor, R. Neural crest migration: Interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration. Wiley Interdiscip. Rev. Dev. Biol. 1, 435–445. https://doi.org/10.1002/wdev.28 (2012). (PMID: 10.1002/wdev.2823801492)
Perera, S. N. & Kerosuo, L. On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. Stem Cells 39, 7–25. https://doi.org/10.1002/stem.3283 (2021). (PMID: 10.1002/stem.328333017496)
Etchevers, H. C., Amiel, J. & Lyonnet, S. Molecular bases of human neurocristopathies. Adv. Exp. Med. Biol. 589, 213–234. https://doi.org/10.1007/978-0-387-46954-6_14 (2006). (PMID: 10.1007/978-0-387-46954-6_1417076285)
Shellard, A. & Mayor, R. Chemotaxis during neural crest migration. Semin. Cell Dev. Biol. 55, 111–118. https://doi.org/10.1016/j.semcdb.2016.01.031 (2016). (PMID: 10.1016/j.semcdb.2016.01.03126820523)
Szabo, A. & Mayor, R. Mechanisms of neural crest migration. Annu. Rev. Genet. 52, 43–63. https://doi.org/10.1146/annurev-genet-120417-031559 (2018). (PMID: 10.1146/annurev-genet-120417-03155930476447)
Barriga, E. H. & Mayor, R. Embryonic cell-cell adhesion: A key player in collective neural crest migration. Curr. Top. Dev. Biol. 112, 301–323. https://doi.org/10.1016/bs.ctdb.2014.11.023 (2015). (PMID: 10.1016/bs.ctdb.2014.11.02325733144)
Friedl, P. & Mayor, R. Tuning collective cell migration by cell-cell junction regulation. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a029199 (2017). (PMID: 10.1101/cshperspect.a029199280962615378050)
Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat. Rev. Cancer 4, 118–132. https://doi.org/10.1038/nrc1276 (2004). (PMID: 10.1038/nrc127614964308)
Leshchyns’ka, I. & Sytnyk, V. Reciprocal interactions between cell adhesion molecules of the immunoglobulin superfamily and the cytoskeleton in neurons. Front. Cell Dev. Biol. 4, 9. https://doi.org/10.3389/fcell.2016.00009 (2016). (PMID: 10.3389/fcell.2016.00009269093484754453)
Saupe, S. et al. Molecular cloning of a human cDNA IGSF3 encoding an immunoglobulin-like membrane protein: Expression and mapping to chromosome band 1p13. Genomics 52, 305–311. https://doi.org/10.1006/geno.1998.5439 (1998). (PMID: 10.1006/geno.1998.54399790749)
Usardi, A., Iyer, K., Sigoillot, S. M., Dusonchet, A. & Selimi, F. The immunoglobulin-like superfamily member IGSF3 is a developmentally regulated protein that controls neuronal morphogenesis. Dev. Neurobiol. 77, 75–92. https://doi.org/10.1002/dneu.22412 (2017). (PMID: 10.1002/dneu.2241227328461)
Furness, J. B., Rivera, L. R., Cho, H. J., Bravo, D. M. & Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol. 10, 729–740. https://doi.org/10.1038/nrgastro.2013.180 (2013). (PMID: 10.1038/nrgastro.2013.18024061204)
Rao, M. & Gershon, M. D. The bowel and beyond: The enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 13, 517–528. https://doi.org/10.1038/nrgastro.2016.107 (2016). (PMID: 10.1038/nrgastro.2016.107274353725005185)
Furness, J. B. The organisation of the autonomic nervous system: Peripheral connections. Auton. Neurosci. 130, 1–5. https://doi.org/10.1016/j.autneu.2006.05.003 (2006). (PMID: 10.1016/j.autneu.2006.05.00316798102)
Collier, C. A., Mendiondo, C. & Raghavan, S. Tissue engineering of the gastrointestinal tract: The historic path to translation. J. Biol. Eng. 16, 9. https://doi.org/10.1186/s13036-022-00289-6 (2022). (PMID: 10.1186/s13036-022-00289-6353792998981633)
Furness, J. B. The enteric nervous system: Normal functions and enteric neuropathies. Neurogastroenterol. Motil. 20(Suppl 1), 32–38. https://doi.org/10.1111/j.1365-2982.2008.01094.x (2008). (PMID: 10.1111/j.1365-2982.2008.01094.x18402640)
Mercado-Perez, A. & Beyder, A. Gut feelings: Mechanosensing in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 19, 283–296. https://doi.org/10.1038/s41575-021-00561-y (2022). (PMID: 10.1038/s41575-021-00561-y350226079059832)
Tullie, L., Jones, B. C., De Coppi, P. & Li, V. S. W. Building gut from scratch - progress and update of intestinal tissue engineering. Nat. Rev. Gastroenterol. Hepatol. 19, 417–431. https://doi.org/10.1038/s41575-022-00586-x (2022). (PMID: 10.1038/s41575-022-00586-x35241800)
Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685. https://doi.org/10.1038/nri3738 (2014). (PMID: 10.1038/nri373825234148)
Brasseur, J. G., Nicosia, M. A., Pal, A. & Miller, L. S. Function of longitudinal vs circular muscle fibers in esophageal peristalsis, deduced with mathematical modeling. World J. Gastroenterol. 13, 1335–1346. https://doi.org/10.3748/wjg.v13.i9.1335 (2007). (PMID: 10.3748/wjg.v13.i9.1335174579634146916)
Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9, 286–294. https://doi.org/10.1038/nrgastro.2012.32 (2012). (PMID: 10.1038/nrgastro.2012.3222392290)
Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science https://doi.org/10.1126/science.aas9536 (2019). (PMID: 10.1126/science.aas953631171666)
Kerosuo, L. et al. Enhanced expression of MycN/CIP2A drives neural crest toward a neural stem cell-like fate: Implications for priming of neuroblastoma. Proc. Natl. Acad. Sci. U.S.A. 115, E7351–E7360. https://doi.org/10.1073/pnas.1800039115 (2018). (PMID: 10.1073/pnas.1800039115300218546077707)
La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96. https://doi.org/10.1038/s41586-021-03775-x (2021). (PMID: 10.1038/s41586-021-03775-x34321664)
Akitaya, T. & Bronner-Fraser, M. Expression of cell adhesion molecules during initiation and cessation of neural crest cell migration. Dev. Dyn. 194, 12–20. https://doi.org/10.1002/aja.1001940103 (1992). (PMID: 10.1002/aja.10019401031421517)
Anderson, R. B. et al. The cell adhesion molecule l1 is required for chain migration of neural crest cells in the developing mouse gut. Gastroenterology 130, 1221–1232. https://doi.org/10.1053/j.gastro.2006.01.002 (2006). (PMID: 10.1053/j.gastro.2006.01.00216618414)
Verschueren, E. et al. The immunoglobulin superfamily receptome defines cancer-relevant networks associated with clinical outcome. Cell 182, 329-344.e319. https://doi.org/10.1016/j.cell.2020.06.007 (2020). (PMID: 10.1016/j.cell.2020.06.00732589946)
Hutchins, E. J. et al. Migration and diversification of the vagal neural crest. Dev. Biol. 444(Suppl 1), S98–S109. https://doi.org/10.1016/j.ydbio.2018.07.004 (2018). (PMID: 10.1016/j.ydbio.2018.07.004299816926320731)
Di Nardo, G. et al. Review article: Molecular, pathological and therapeutic features of human enteric neuropathies. Aliment. Pharmacol. Ther. 28, 25–42. https://doi.org/10.1111/j.1365-2036.2008.03707.x (2008). (PMID: 10.1111/j.1365-2036.2008.03707.x18410560)
Phillips, R. J. & Powley, T. L. Innervation of the gastrointestinal tract: Patterns of aging. Auton. Neurosci. 136, 1–19. https://doi.org/10.1016/j.autneu.2007.04.005 (2007). (PMID: 10.1016/j.autneu.2007.04.005175376812045700)
Hellwig, I. et al. Alterations of the enteric smooth musculature in diverticular disease. J. Gastroenterol. 49, 1241–1252. https://doi.org/10.1007/s00535-013-0886-y (2014). (PMID: 10.1007/s00535-013-0886-y24113817)
Wedel, T. et al. Diverticular disease is associated with an enteric neuropathy as revealed by morphometric analysis. Neurogastroenterol. Motil. 22, 407-414.e493. https://doi.org/10.1111/j.1365-2982.2009.01445.x (2010). (PMID: 10.1111/j.1365-2982.2009.01445.x20040058)
Carmona-Fontaine, C. et al. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957–961. https://doi.org/10.1038/nature07441 (2008). (PMID: 10.1038/nature07441190789602635562)
Theveneau, E. & Linker, C. Leaders in collective migration: Are front cells really endowed with a particular set of skills?. F1000Research 6, 1899. https://doi.org/10.12688/f1000research.11889.1 (2017). (PMID: 10.12688/f1000research.11889.1291522255664975)
Leathers, T. A. & Rogers, C. D. Time to go: Neural crest cell epithelial-to-mesenchymal transition. Development https://doi.org/10.1242/dev.200712 (2022). (PMID: 10.1242/dev.200712359050129440755)
De Pascalis, C. & Etienne-Manneville, S. Single and collective cell migration: The mechanics of adhesions. Mol. Biol. Cell 28, 1833–1846. https://doi.org/10.1091/mbc.E17-03-0134 (2017). (PMID: 10.1091/mbc.E17-03-0134286846095541834)
Cohen, N. R. et al. Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr. Biol. 8, 26–33. https://doi.org/10.1016/s0960-9822(98)70017-x (1998). (PMID: 10.1016/s0960-9822(98)70017-x9427628)
Curry, R. N. et al. Glioma epileptiform activity and progression are driven by IGSF3-mediated potassium dysregulation. Neuron 111, 682-695.e689. https://doi.org/10.1016/j.neuron.2023.01.013 (2023). (PMID: 10.1016/j.neuron.2023.01.01336787748)
Carbone, S. E. Neurons, macrophages, and glia: The role of intercellular communication in the enteric nervous system. Adv. Exp. Med. Biol. 1383, 251–258. https://doi.org/10.1007/978-3-031-05843-1_24 (2022). (PMID: 10.1007/978-3-031-05843-1_2436587164)
Schneider, S., Wright, C. M. & Heuckeroth, R. O. Unexpected roles for the second brain: Enteric nervous system as master regulator of bowel function. Annu. Rev. Physiol. 81, 235–259. https://doi.org/10.1146/annurev-physiol-021317-121515 (2019). (PMID: 10.1146/annurev-physiol-021317-12151530379617)
Fernandez, A. et al. Simple protocol for generating and genotyping genome-edited mice with CRISPR-Cas9 reagents. Curr. Protoc. Mouse Biol. 10, e69. https://doi.org/10.1002/cpmo.69 (2020). (PMID: 10.1002/cpmo.6932159922)
Gurdziel, K., Vogt, K. R., Walton, K. D., Schneider, G. K. & Gumucio, D. L. Transcriptome of the inner circular smooth muscle of the developing mouse intestine: Evidence for regulation of visceral smooth muscle genes by the hedgehog target gene, cJun. Dev. Dyn. 245, 614–626. https://doi.org/10.1002/dvdy.24399 (2016). (PMID: 10.1002/dvdy.24399269303844844863)
معلومات مُعتمدة: ZIA DE000748 United States ImNIH Intramural NIH HHS
المشرفين على المادة: 0 (Immunoglobulins)
تواريخ الأحداث: Date Created: 20231011 Date Completed: 20231102 Latest Revision: 20240210
رمز التحديث: 20240210
مُعرف محوري في PubMed: PMC10567708
DOI: 10.1038/s41598-023-44093-8
PMID: 37821496
قاعدة البيانات: MEDLINE
الوصف
تدمد:2045-2322
DOI:10.1038/s41598-023-44093-8