دورية أكاديمية

Design and testing of a humanized porcine donor for xenotransplantation.

التفاصيل البيبلوغرافية
العنوان: Design and testing of a humanized porcine donor for xenotransplantation.
المؤلفون: Anand RP; eGenesis, Cambridge, MA, USA., Layer JV; eGenesis, Cambridge, MA, USA., Heja D; eGenesis, Cambridge, MA, USA., Hirose T; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Lassiter G; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Firl DJ; eGenesis, Cambridge, MA, USA.; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Paragas VB; eGenesis, Cambridge, MA, USA., Akkad A; eGenesis, Cambridge, MA, USA., Chhangawala S; eGenesis, Cambridge, MA, USA., Colvin RB; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Ernst RJ; eGenesis, Cambridge, MA, USA., Esch N; eGenesis, Cambridge, MA, USA., Getchell K; eGenesis, Cambridge, MA, USA., Griffin AK; eGenesis, Cambridge, MA, USA., Guo X; eGenesis, Cambridge, MA, USA., Hall KC; eGenesis, Cambridge, MA, USA., Hamilton P; eGenesis, Cambridge, MA, USA., Kalekar LA; eGenesis, Cambridge, MA, USA., Kan Y; eGenesis, Cambridge, MA, USA., Karadagi A; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Li F; eGenesis, Cambridge, MA, USA., Low SC; eGenesis, Cambridge, MA, USA., Matheson R; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Nehring C; eGenesis, Cambridge, MA, USA., Otsuka R; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Pandelakis M; eGenesis, Cambridge, MA, USA., Policastro RA; eGenesis, Cambridge, MA, USA., Pols R; eGenesis, Cambridge, MA, USA., Queiroz L; eGenesis, Cambridge, MA, USA., Rosales IA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Serkin WT; eGenesis, Cambridge, MA, USA., Stiede K; eGenesis, Cambridge, MA, USA., Tomosugi T; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Xue Y; eGenesis, Cambridge, MA, USA., Zentner GE; eGenesis, Cambridge, MA, USA., Angeles-Albores D; eGenesis, Cambridge, MA, USA., Chris Chao J; eGenesis, Cambridge, MA, USA., Crabtree JN; eGenesis, Cambridge, MA, USA., Harken S; eGenesis, Cambridge, MA, USA., Hinkle N; eGenesis, Cambridge, MA, USA., Lemos T; eGenesis, Cambridge, MA, USA., Li M; eGenesis, Cambridge, MA, USA., Pantano L; eGenesis, Cambridge, MA, USA., Stevens D; eGenesis, Cambridge, MA, USA., Subedar OD; eGenesis, Cambridge, MA, USA., Tan X; eGenesis, Cambridge, MA, USA., Yin S; eGenesis, Cambridge, MA, USA., Anwar IJ; Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA., Aufhauser D; Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA., Capuano S; Wisconsin National Primate Research Center, Madison, WI, USA., Kaufman DB; Department of Surgery, Division of Transplantation, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA., Knechtle SJ; Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA., Kwun J; Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC, USA., Shanmuganayagam D; Department of Animal and Dairy Science, University of Wisconsin, Madison, WI, USA., Markmann JF; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Church GM; Department of Genetics, Harvard Medical School, Boston, MA, USA.; Wyss Institute of Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA., Curtis M; eGenesis, Cambridge, MA, USA., Kawai T; Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA., Youd ME; eGenesis, Cambridge, MA, USA. michele.youd@egenesisbio.com., Qin W; eGenesis, Cambridge, MA, USA. wenning.qin@egenesisbio.com.
المصدر: Nature [Nature] 2023 Oct; Vol. 622 (7982), pp. 393-401. Date of Electronic Publication: 2023 Oct 11.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Graft Rejection*/immunology , Graft Rejection*/prevention & control , Kidney Transplantation*/methods , Macaca fascicularis* , Swine*/genetics , Transplantation, Heterologous*/methods, Animals ; Humans ; Animals, Genetically Modified ; Endothelial Cells/immunology ; Endothelial Cells/metabolism ; Polysaccharides/deficiency ; Transgenes/genetics
مستخلص: Recent human decedent model studies 1,2 and compassionate xenograft use 3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.
(© 2023. The Author(s).)
References: Montgomery, R. A. et al. Results of two cases of pig-to-human kidney xenotransplantation. N. Engl. J. Med. 386, 1889–1898 (2022). (PMID: 3558415610.1056/NEJMoa2120238)
Porrett, P. M. et al. First clinical‐grade porcine kidney xenotransplant using a human decedent model. Am. J. Transplant. 22, 1037–1053 (2022). (PMID: 3504912110.1111/ajt.16930)
Griffith, B. P. et al. Genetically modified porcine-to-human cardiac xenotransplantation. N. Engl. J. Med. 387, 35–44 (2022). (PMID: 357319121036107010.1056/NEJMoa2201422)
Adams, A. B. et al. Anti-C5 antibody tesidolumab reduces early antibody-mediated rejection and prolongs survival in renal xenotransplantation. Ann. Surg. 274, 473–480 (2021). (PMID: 3423881210.1097/SLA.0000000000004996)
Iwase, H. et al. Immunological and physiological observations in baboons with life-supporting genetically engineered pig kidney grafts. Xenotransplantation 24, e12293 (2017). (PMID: 10.1111/xen.12293)
Kim, S. C. et al. Long‐term survival of pig‐to‐rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am. J. Transplant. 19, 2174–2185 (2019). (PMID: 30821922665834710.1111/ajt.15329)
Hinrichs, A. et al. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver. Mol. Metab. 11, 113–128 (2018). (PMID: 29678421600138710.1016/j.molmet.2018.03.006)
Yamamoto, T. et al. Old World monkeys are less than ideal transplantation models for testing pig organs lacking three carbohydrate antigens (triple-knockout). Sci. Rep. 10, 9771 (2020). (PMID: 32555507730011910.1038/s41598-020-66311-3)
Estrada, J. L. et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation 22, 194–202 (2015). (PMID: 25728481446496110.1111/xen.12161)
Ma, D. et al. Successful long-term TMA- and rejection-free survival of a kidney xenograft with triple xenoantigen knockout plus insertion of multiple human transgenes. Transplantation https://doi.org/10.1097/01.tp.0000698660.82982.ca (2020).
Niu, D. et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science 357, 1303–1307 (2017). (PMID: 28798043581328410.1126/science.aan4187)
Patience, C., Takeuchi, Y. & Weiss, R. A. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med. 3, 282–286 (1997). (PMID: 905585410.1038/nm0397-282)
Robson, S. C., Am Esch, J. S. & Bach, F. H. Factors in xenograft rejection. Ann. N. Y. Acad. Sci. 875, 261–276 (1999). (PMID: 1041557310.1111/j.1749-6632.1999.tb08509.x)
Wolf, E., Kemter, E., Klymiuk, N. & Reichart, B. Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Anim. Front. 9, 13–20 (2019). (PMID: 32002258695192710.1093/af/vfz014)
Galili, U., Shohet, S. B., Kobrin, E., Stults, C. L. & Macher, B. A. Man, apes, and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J. Biol. Chem. 263, 17755–17762 (1988). (PMID: 246046310.1016/S0021-9258(19)77900-9)
Bouhours, D., Pourcel, C. & Bouhours, J.-F. Simultaneous expression by porcine aorta endothelial cells of glycosphingolipids bearing the major epitope for human xenoreactive antibodies (Galα1–3Gal), blood group H determinant and N-glycolylneuraminic acid. Glycoconj. J. 13, 947–953 (1996). (PMID: 898108610.1007/BF01053190)
Byrne, G. W., Stalboerger, P. G., Du, Z., Davis, T. R. & McGregor, C. G. A. Identification of new carbohydrate and membrane protein antigens in cardiac xenotransplantation. Transplantation 91, 287–292 (2011). (PMID: 211195621002269110.1097/TP.0b013e318203c27d)
Shaper, N. L., Lin, S. P., Joziasse, D. H., Kim, D. Y. & Yang-Feng, T. L. Assignment of two human alpha-1,3-galactosyltransferase gene sequences (GGTA1 and GGTA1P) to chromosomes 9q33-q34 and 12q14-q15. Genomics 12, 613–615 (1992). (PMID: 155971310.1016/0888-7543(92)90458-5)
Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T. & Suzuki, A. The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 273, 15866–15871 (1998). (PMID: 962418810.1074/jbc.273.25.15866)
Galili, U., Rachmilewitz, E. A., Peleg, A. & Flechner, I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J. Exp. Med. 160, 1519–1531 (1984). (PMID: 649160310.1084/jem.160.5.1519)
Kappler, K. & Hennet, T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun. 21, 224–239 (2020). (PMID: 32753697744987910.1038/s41435-020-0105-9)
Montiel, M.-D., Krzewinski-Recchi, M.-A., Delannoy, P. & Harduin-Lepers, A. Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain. Biochem. J. 373, 369–379 (2003). (PMID: 12678917122349010.1042/bj20021892)
Stenfelt, L. et al. Missense mutations in the C-terminal portion of the B4GALNT2-encoded glycosyltransferase underlying the Sd(a−) phenotype. Biochem. Biophys. Rep. 19, 100659 (2019). (PMID: 313676826646742)
Renton, P. H., Howell, P., Ikin, E. W., Giles, C. M. & Goldsmith, Dr. K. L. G. Anti-Sda, a new blood group antibody. Vox. Sang. 13, 493–501 (1967).
Morozumi, K. et al. Significance of histochemical expression of hanganutziu–deicher antigens in pig, baboon and human tissues. Transplant. Proc. 31, 942–944 (1999). (PMID: 1008341710.1016/S0041-1345(98)01847-8)
Mohan Rao, L. V., Esmon, C. T. & Pendurthi, U. R. Endothelial cell protein C receptor: a multiliganded and multifunctional receptor. Blood 124, 1553–1562 (2014). (PMID: 25049281415526810.1182/blood-2014-05-578328)
Esmon, C. Do-all receptor takes on coagulation, inflammation. Nat. Med. 11, 475–477 (2005). (PMID: 1587505010.1038/nm0505-475)
Panepinto, L. M., Phillips, R. W., Wheeler, L. R. & Will, D. H. The Yucatan minature pig as a laboratory animal. Lab. Anim. Sci. 28, 308–313 (1978). (PMID: 682579)
Choi, M.-K. et al. Determination of complete sequence information of the human ABO blood group orthologous gene in pigs and breed difference in blood type frequencies. Gene 640, 1–5 (2018). (PMID: 2896613210.1016/j.gene.2017.09.047)
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013). (PMID: 23287718379541110.1126/science.1231143)
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013). (PMID: 23287722371262810.1126/science.1232033)
Schlake, T. & Bode, J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33, 12746–12751 (1994). (PMID: 794767810.1021/bi00209a003)
Kim, J. H. et al. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 6, e18556 (2011). (PMID: 21602908308470310.1371/journal.pone.0018556)
Ni Choileain, S. et al. TCR-stimulated changes in cell surface CD46 expression generate type 1 regulatory T cells. Sci. Signal. 10, eaah6163 (2017). (PMID: 2906653910.1126/scisignal.aah6163)
Angeletti, A. et al. Loss of decay-accelerating factor triggers podocyte injury and glomerulosclerosis. J. Exp. Med. 217, e20191699 (2020). (PMID: 32717081747873710.1084/jem.20191699)
Esmon, C. T. The protein C pathway. Chest 124, 26S–32S (2003). (PMID: 1297012110.1378/chest.124.3_suppl.26S)
Ide, K. et al. Role for CD47-SIRPα signaling in xenograft rejection by macrophages. Proc. Natl Acad. Sci. USA 104, 5062–5066 (2007). (PMID: 17360380182926410.1073/pnas.0609661104)
Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000). (PMID: 11009421358239910.1126/science.289.5488.2350)
Kapturczak, M. H. et al. Heme oxygenase-1 modulates early inflammatory responses. Am. J. Pathol. 165, 1045–1053 (2004). (PMID: 15331427161861110.1016/S0002-9440(10)63365-2)
Oropeza, M. et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli. Xenotransplantation 16, 522–534 (2009). (PMID: 2004205210.1111/j.1399-3089.2009.00556.x)
Petersen, B. et al. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys. Xenotransplantation 18, 355–368 (2011). (PMID: 2216814210.1111/j.1399-3089.2011.00674.x)
Roufosse, C. et al. A 2018 reference guide to the Banff Classification of Renal Allograft Pathology. Transplantation 102, 1795–1814 (2018). (PMID: 30028786759797410.1097/TP.0000000000002366)
Rosales, I. A. & Colvin, R. B. The pathology of solid organ xenotransplantation. Curr. Opin. Organ Transplant. 24, 535 (2019). (PMID: 3134801510.1097/MOT.0000000000000681)
Cooper, D. K. C., Ezzelarab, M., Iwase, H. & Hara, H. Perspectives on the optimal genetically engineered pig in 2018 for initial clinical trials of kidney or heart xenotransplantation. Transplantation 102, 1974–1982 (2018). (PMID: 30247446624908010.1097/TP.0000000000002443)
Sachs, D. H. Transplantation tolerance through mixed chimerism: from allo to xeno. Xenotransplantation 25, e12420 (2018). (PMID: 29913045601007410.1111/xen.12420)
Joska, T. M., Mashruwala, A., Boyd, J. M. & Belden, W. J. A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile. J. Microbiol. Methods 100, 46–51 (2014). (PMID: 24418681452121510.1016/j.mimet.2013.11.013)
Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 8, 352 (2016). (PMID: 10.32614/RJ-2016-025)
Yang, L. et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science 350, 1101–1104 (2015). (PMID: 2645652810.1126/science.aad1191)
Campbell, K. H. S., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66 (1996). (PMID: 859890610.1038/380064a0)
Dhondt, L. et al. Development and validation of an ultra-high performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of iohexol, p-aminohippuric acid and creatinine in porcine and broiler chicken plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1117, 77–85 (2019). (PMID: 3100484910.1016/j.jchromb.2019.04.017)
معلومات مُعتمدة: P51 OD011106 United States OD NIH HHS; T32 AI007529 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Polysaccharides)
تواريخ الأحداث: Date Created: 20231011 Date Completed: 20231025 Latest Revision: 20240210
رمز التحديث: 20240210
مُعرف محوري في PubMed: PMC10567564
DOI: 10.1038/s41586-023-06594-4
PMID: 37821590
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-023-06594-4