دورية أكاديمية

Activation of human STING by a molecular glue-like compound.

التفاصيل البيبلوغرافية
العنوان: Activation of human STING by a molecular glue-like compound.
المؤلفون: Li J; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA., Canham SM; Novartis Institutes for BioMedical Research, Cambridge, MA, USA. steve.canham@novartis.com., Wu H; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Henault M; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Chen L; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Liu G; Novartis Institutes for BioMedical Research, San Diego, CA, USA., Chen Y; Novartis Institutes for BioMedical Research, San Diego, CA, USA., Yu G; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Miller HR; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Hornak V; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Brittain SM; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Michaud GA; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Tutter A; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Broom W; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Digan ME; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., McWhirter SM; Aduro Biotech, Inc., Berkeley, CA, USA., Sivick KE; Aduro Biotech, Inc., Berkeley, CA, USA., Pham HT; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Chen CH; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Tria GS; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., McKenna JM; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Schirle M; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Mao X; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Nicholson TB; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Wang Y; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Jenkins JL; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Jain RK; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Tallarico JA; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Patel SJ; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Zheng L; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Ross NT; Novartis Institutes for BioMedical Research, Cambridge, MA, USA., Cho CY; Novartis Institutes for BioMedical Research, San Diego, CA, USA., Zhang X; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA. xuewu.zhang@utsouthwestern.edu.; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA. xuewu.zhang@utsouthwestern.edu., Bai XC; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA. xiaochen.bai@utsouthwestern.edu.; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA. xiaochen.bai@utsouthwestern.edu., Feng Y; Novartis Institutes for BioMedical Research, Cambridge, MA, USA. yan.feng@novartis.com.
المصدر: Nature chemical biology [Nat Chem Biol] 2024 Mar; Vol. 20 (3), pp. 365-372. Date of Electronic Publication: 2023 Oct 12.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مواضيع طبية MeSH: Adaptor Proteins, Signal Transducing*/metabolism , Membrane Proteins*/metabolism, Animals ; Humans ; Biological Assay ; Cytosol ; Immunity, Innate ; Ligands
مستخلص: Stimulator of interferon genes (STING) is a dimeric transmembrane adapter protein that plays a key role in the human innate immune response to infection and has been therapeutically exploited for its antitumor activity. The activation of STING requires its high-order oligomerization, which could be induced by binding of the endogenous ligand, cGAMP, to the cytosolic ligand-binding domain. Here we report the discovery through functional screens of a class of compounds, named NVS-STGs, that activate human STING. Our cryo-EM structures show that NVS-STG2 induces the high-order oligomerization of human STING by binding to a pocket between the transmembrane domains of the neighboring STING dimers, effectively acting as a molecular glue. Our functional assays showed that NVS-STG2 could elicit potent STING-mediated immune responses in cells and antitumor activities in animal models.
(© 2023. The Author(s).)
التعليقات: Comment in: Nat Rev Drug Discov. 2023 Dec;22(12):955. (PMID: 37907755)
References: Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008). (PMID: 18724357280493310.1038/nature07317)
Zhang, X., Bai, X. C. & Chen, Z. J. Structures and mechanisms in the cGAS-STING innate immunity pathway. Immunity 53, 43–53 (2020). (PMID: 3266822710.1016/j.immuni.2020.05.013)
Zhang, H., You, Q. D. & Xu, X. L. Targeting stimulator of interferon genes (STING): a medicinal chemistry perspective. J. Med. Chem. 63, 3785–3816 (2020). (PMID: 3182097810.1021/acs.jmedchem.9b01039)
Le Naour, J., Zitvogel, L., Galluzzi, L., Vacchelli, E. & Kroemer, G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 9, 1777624 (2020). (PMID: 32934881746685410.1080/2162402X.2020.1777624)
Ding, C., Song, Z., Shen, A., Chen, T. & Zhang, A. Small molecules targeting the innate immune cGAS-STING-TBK1 signaling pathway. Acta Pharm. Sin. B 10, 2272–2298 (2020).
Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).
Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018). (PMID: 2997372310.1038/s41586-018-0287-8)
Sintim, H. O., Mikek, C. G., Wang, M. & Sooreshjani, M. A. Interrupting cyclic dinucleotide-cGAS-STING axis with small molecules. Medchemcomm 10, 1999–2023 (2019). (PMID: 32206239706951610.1039/C8MD00555A)
Liu, Y. et al. STING, a promising target for small molecular immune modulator: a review. Eur. J. Med. Chem. 211, 113113 (2021). (PMID: 3336079910.1016/j.ejmech.2020.113113)
Wang, Z. & Xi, Z. Chemical evolution of cyclic dinucleotides: perspective of the analogs and their preparation. Tetrahedron 87, 132096 (2021). (PMID: 10.1016/j.tet.2021.132096)
Chin, E. N. et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 369, 993–999 (2020). (PMID: 3282012610.1126/science.abb4255)
Shang, G., Zhang, C., Chen, Z. J., Bai, X. C. & Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 567, 389–393 (2019). (PMID: 30842659685989410.1038/s41586-019-0998-5)
Burdette, D. L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011). (PMID: 21947006320331410.1038/nature10429)
Jin, L. et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol. 187, 2595–2601 (2011). (PMID: 2181377610.4049/jimmunol.1100088)
Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013). (PMID: 2325841310.1126/science.1232458)
Wu, J. X. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013). (PMID: 2325841210.1126/science.1229963)
Ishikawa, H., Ma, Z. & Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009). (PMID: 19776740466415410.1038/nature08476)
Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009). (PMID: 19926846279156310.1073/pnas.0911267106)
Mukai, K. et al. Homeostatic regulation of STING by retrograde membrane traffic to the ER. Nat. Commun. 12, 61 (2021). (PMID: 33397928778284610.1038/s41467-020-20234-9)
Ergun, S. L., Fernandez, D., Weiss, T. M. & Li, L. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178, 290–301 e210 (2019). (PMID: 3123071210.1016/j.cell.2019.05.036)
Zhao, B. et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature 569, 718–722 (2019). (PMID: 31118511659699410.1038/s41586-019-1228-x)
Zhang, C. G. et al. Structural basis of STING binding with and phosphorylation by TBK1. Nature 567, 394–398 (2019).
Liu, S. et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347, aaa2630 (2015). (PMID: 2563680010.1126/science.aaa2630)
Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014). (PMID: 25517616515559310.1016/j.immuni.2014.10.019)
Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015). (PMID: 25959818444085210.1016/j.celrep.2015.04.031)
Curran, E. et al. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep. 15, 2357–2366 (2016). (PMID: 27264175511680910.1016/j.celrep.2016.05.023)
Kong, X. et al. STING as an emerging therapeutic target for drug discovery: perspectives from the global patent landscape. J. Adv. Res. https://doi.org/10.1016/j.jare.2022.05.006 (2022). (PMID: 10.1016/j.jare.2022.05.0063646027410658236)
Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007). (PMID: 1785387810.1038/nprot.2007.321)
Thomas, J. R. et al. A photoaffinity labeling-based chemoproteomics strategy for unbiased target deconvolution of small molecule drug candidates. Methods Mol. Biol. 1647, 1–18 (2017). (PMID: 2880899210.1007/978-1-4939-7201-2_1)
Li, Z. et al. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew. Chem. Int. Ed. Engl. 52, 8551–8556 (2013). (PMID: 2375434210.1002/anie.201300683)
Presolski, S. I., Hong, V. P. & Finn, M. G. Copper-catalyzed azide-alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol. 3, 153–162 (2011). (PMID: 22844652340449210.1002/9780470559277.ch110148)
Gao, P. et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154, 748–762 (2013). (PMID: 23910378438673310.1016/j.cell.2013.07.023)
Lu, D. et al. Activation of STING by targeting a pocket in the transmembrane domain. Nature 604, 557–562 (2022). (PMID: 35388221909819810.1038/s41586-022-04559-7)
Conlon, J. et al. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J. Immunol. 190, 5216–5225 (2013). (PMID: 2358568010.4049/jimmunol.1300097)
Kim, S. et al. Anticancer flavonoids are mouse-selective STING agonists. ACS Chem. Biol. 8, 1396–1401 (2013). (PMID: 23683494381552310.1021/cb400264n)
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001). (PMID: 1115261310.1006/jmbi.2000.4315)
Sonnhammer, E. L., von Heijne, G. & Krogh, A. A hidden Markov model for predicting transmembrane helices in protein sequences. Proc. Int. Conf. Intell. Syst. Mol. Biol. 6, 175–182 (1998). (PMID: 9783223)
Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021). (PMID: 3341786410.1016/j.cell.2020.12.020)
Geiger, T. M., Schäfer, S. C., Dreizler, J. K., Walz, M. & Hausch, F. Clues to molecular glues. Curr. Res. Chem. Biol. 2, 100018 (2022). (PMID: 10.1016/j.crchbi.2021.100018)
Wu, H. et al. Molecular glues modulate protein functions by inducing protein aggregation: a promising therapeutic strategy of small molecules for disease treatment. Acta Pharm. Sin. B 12, 3548–3566 (2022). (PMID: 36176907951349810.1016/j.apsb.2022.03.019)
Wigley, D. B., Lyall, A., Hart, K. W. & Holbrook, J. J. The greater strength of arginine: carboxylate over lysine carboxylate ion pairs implications for the design of novel enzymes and drugs. Biochem. Biophys. Res. Commun. 149, 927–929 (1987). (PMID: 312274810.1016/0006-291X(87)90497-9)
Sivick, K. E. et al. Magnitude of therapeutic STING activation determines CD8 + T cell-mediated anti-tumor immunity. Cell Rep. 25, 3074–3085 (2018).
Hall, B. et al. Genome editing in mice using CRISPR/Cas9 technology. Curr. Protoc. Cell Biol. 81, e57 (2018). (PMID: 30178917994223710.1002/cpcb.57)
Wefers, B., Bashir, S., Rossius, J., Wurst, W. & Kuhn, R. Gene editing in mouse zygotes using the CRISPR/Cas9 system. Methods 121, 55–67 (2017). (PMID: 2826388610.1016/j.ymeth.2017.02.008)
Corrales, L., McWhirter, S. M., Dubensky, T. W. Jr. & Gajewski, T. F. The host STING pathway at the interface of cancer and immunity. J. Clin. Invest. 126, 2404–2411 (2016). (PMID: 27367184492269210.1172/JCI86892)
Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8 + T cell responses through CD8α + dendritic cells. J. Exp. Med. 208, 2005–2016 (2011). (PMID: 21930765318206410.1084/jem.20101159)
Blank, C. et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8 + T cells. Cancer Res. 64, 1140–1145 (2004). (PMID: 1487184910.1158/0008-5472.CAN-03-3259)
York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015). (PMID: 26686653478338210.1016/j.cell.2015.11.045)
Chu, T. T. et al. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature 596, 570–575 (2021).
Takahashi, K. et al. A cell-free assay implicates a role of sphingomyelin and cholesterol in STING phosphorylation. Sci. Rep. 11, 11996 (2021). (PMID: 34099821818497010.1038/s41598-021-91562-z)
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013). (PMID: 24157548396986010.1038/nprot.2013.143)
Dukkipati, A., Park, H. H., Waghray, D., Fischer, S. & Garcia, K. C. BacMam system for high-level expression of recombinant soluble and membrane glycoproteins for structural studies. Protein Expr. Purif. 62, 160–170 (2008). (PMID: 18782620263711510.1016/j.pep.2008.08.004)
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193)
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). (PMID: 26592709471134310.1016/j.jsb.2015.11.003)
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). (PMID: 30412051625042510.7554/eLife.42166)
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Shang, G. et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19, 725–727 (2012). (PMID: 2272866010.1038/nsmb.2332)
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084)
معلومات مُعتمدة: R01 CA273595 United States CA NCI NIH HHS; U24 GM129547 United States GM NIGMS NIH HHS
المشرفين على المادة: 0 (Adaptor Proteins, Signal Transducing)
0 (Ligands)
0 (Membrane Proteins)
تواريخ الأحداث: Date Created: 20231012 Date Completed: 20240304 Latest Revision: 20240309
رمز التحديث: 20240309
مُعرف محوري في PubMed: PMC10907298
DOI: 10.1038/s41589-023-01434-y
PMID: 37828400
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4469
DOI:10.1038/s41589-023-01434-y