دورية أكاديمية

Nature of Charge Carrier Recombination in CuWO 4 Photoanodes for Photoelectrochemical Water Splitting.

التفاصيل البيبلوغرافية
العنوان: Nature of Charge Carrier Recombination in CuWO 4 Photoanodes for Photoelectrochemical Water Splitting.
المؤلفون: Grigioni I; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy., Polo A; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy., Nomellini C; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy., Vigni L; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy., Poma A; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy., Dozzi MV; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy., Selli E; Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
المصدر: ACS applied energy materials [ACS Appl Energy Mater] 2023 Sep 20; Vol. 6 (19), pp. 10020-10029. Date of Electronic Publication: 2023 Sep 20 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Chemical Society Country of Publication: United States NLM ID: 101718976 Publication Model: eCollection Cited Medium: Internet ISSN: 2574-0962 (Electronic) NLM ISO Abbreviation: ACS Appl Energy Mater Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Chemical Society
مستخلص: CuWO 4 is a ternary semiconductor oxide with excellent visible light harvesting properties up to 550 nm and stability at high pH values, which make it a suitable material to build photoanodes for solar light conversion to hydrogen via water splitting. In this work, we studied the photoelectrochemical (PEC) performance of transparent CuWO 4 electrodes with tunable light absorption and thickness, aiming at identifying the intrinsic bottlenecks of photogenerated charge carriers in this semiconductor. We found that electrodes with optimal CuWO 4 thickness exhibit visible light activity due to the absorption of long-wavelength photons and a balanced electron and hole extraction from the oxide. The PEC performance of CuWO 4 is light-intensity-dependent, with charge recombination increasing with light intensity and most photogenerated charge carriers recombining in bulk sites, as demonstrated by PEC tests performed in the presence of sacrificial agents or cocatalysts. The best-performing 580 nm thick CuWO 4 electrode delivers a photocurrent of 0.37 mA cm -2 at 1.23 V SHE , with a 7% absorbed photon to current efficiency over the CuWO 4 absorption spectrum.
Competing Interests: The authors declare no competing financial interest.
(© 2023 The Authors. Published by American Chemical Society.)
References: Angew Chem Int Ed Engl. 2023 Jan 2;62(1):e202210804. (PMID: 36351869)
Nano Lett. 2011 Jan 12;11(1):203-8. (PMID: 21114333)
Inorg Chem. 2014 May 5;53(9):4394-9. (PMID: 24754500)
Chem Soc Rev. 2019 Apr 1;48(7):2126-2157. (PMID: 30499570)
Adv Mater. 2023 Apr;35(15):e2209955. (PMID: 36692193)
Phys Chem Chem Phys. 2013 Mar 7;15(9):3273-8. (PMID: 23348367)
Sci Rep. 2015 Jun 08;5:11141. (PMID: 26053164)
J Am Chem Soc. 2018 Oct 31;140(43):14042-14045. (PMID: 30296074)
Nanoscale. 2016 Mar 21;8(11):5892-901. (PMID: 26912373)
Chem Sci. 2019 Jan 16;10(9):2643-2652. (PMID: 30996980)
ACS Appl Mater Interfaces. 2022 Oct 26;14(42):47737-47746. (PMID: 36228181)
Acc Chem Res. 2016 Jun 21;49(6):1121-9. (PMID: 27227377)
Angew Chem Int Ed Engl. 2010 Aug 23;49(36):6405-8. (PMID: 20665613)
J Phys Chem C Nanomater Interfaces. 2021 Apr 8;125(13):7329-7336. (PMID: 33859771)
ACS Appl Mater Interfaces. 2016 Apr 13;8(14):9211-7. (PMID: 27011376)
ACS Appl Mater Interfaces. 2020 Nov 11;12(45):50592-50599. (PMID: 33119249)
ACS Appl Energy Mater. 2020 Jul 27;3(7):6956-6964. (PMID: 33829150)
Chem Commun (Camb). 2017 Jan 19;53(7):1285-1288. (PMID: 28067348)
J Phys Condens Matter. 2019 Apr 10;31(14):145503. (PMID: 30650395)
ACS Appl Energy Mater. 2022 Nov 28;5(11):13142-13148. (PMID: 36465258)
J Phys Condens Matter. 2020 Jan 1;32(1):014001. (PMID: 31514175)
Chem Soc Rev. 2013 Mar 21;42(6):2321-37. (PMID: 23092995)
J Am Chem Soc. 2012 Feb 1;134(4):2186-92. (PMID: 22263661)
Angew Chem Int Ed Engl. 2019 Feb 18;58(8):2300-2304. (PMID: 30548747)
Phys Chem Chem Phys. 2015 Apr 21;17(15):9857-66. (PMID: 25776231)
J Am Chem Soc. 2011 Jul 6;133(26):10134-40. (PMID: 21553825)
J Phys Chem C Nanomater Interfaces. 2021 Mar 18;125(10):5692-5699. (PMID: 35069964)
Science. 2014 Feb 28;343(6174):990-4. (PMID: 24526312)
Nat Commun. 2016 Dec 14;7:13380. (PMID: 27966548)
Chem Soc Rev. 2014 Nov 21;43(22):7520-35. (PMID: 24413305)
Phys Chem Chem Phys. 2014 Jul 14;16(26):13465-76. (PMID: 24887757)
تواريخ الأحداث: Date Created: 20231013 Latest Revision: 20231020
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10565723
DOI: 10.1021/acsaem.3c01608
PMID: 37830012
قاعدة البيانات: MEDLINE
الوصف
تدمد:2574-0962
DOI:10.1021/acsaem.3c01608