دورية أكاديمية

Deep learning for automated left ventricular outflow tract diameter measurements in 2D echocardiography.

التفاصيل البيبلوغرافية
العنوان: Deep learning for automated left ventricular outflow tract diameter measurements in 2D echocardiography.
المؤلفون: Zha SZ; University of Oslo, Oslo, Norway. sigzha@gmail.com., Rogstadkjernet M; University of Oslo, Oslo, Norway., Klæboe LG; Oslo University Hospital, Rikshospitalet, Oslo, Norway., Skulstad H; University of Oslo, Oslo, Norway.; Oslo University Hospital, Rikshospitalet, Oslo, Norway., Singstad BJ; Oslo University Hospital, Rikshospitalet, Oslo, Norway., Gilbert A; GE HealthCare, Oslo, Norway., Edvardsen T; University of Oslo, Oslo, Norway.; Oslo University Hospital, Rikshospitalet, Oslo, Norway., Samset E; University of Oslo, Oslo, Norway.; GE HealthCare, Oslo, Norway., Brekke PH; Oslo University Hospital, Rikshospitalet, Oslo, Norway.
المصدر: Cardiovascular ultrasound [Cardiovasc Ultrasound] 2023 Oct 13; Vol. 21 (1), pp. 19. Date of Electronic Publication: 2023 Oct 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101159952 Publication Model: Electronic Cited Medium: Internet ISSN: 1476-7120 (Electronic) Linking ISSN: 14767120 NLM ISO Abbreviation: Cardiovasc Ultrasound Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London, UK : BioMed Central, 2003-
مواضيع طبية MeSH: Deep Learning*, Humans ; Echocardiography ; Heart ; Stroke Volume
مستخلص: Background: Measurement of the left ventricular outflow tract diameter (LVOTd) in echocardiography is a common source of error when used to calculate the stroke volume. The aim of this study is to assess whether a deep learning (DL) model, trained on a clinical echocardiographic dataset, can perform automatic LVOTd measurements on par with expert cardiologists.
Methods: Data consisted of 649 consecutive transthoracic echocardiographic examinations of patients with coronary artery disease admitted to a university hospital. 1304 LVOTd measurements in the parasternal long axis (PLAX) and zoomed parasternal long axis views (ZPLAX) were collected, with each patient having 1-6 measurements per examination. Data quality control was performed by an expert cardiologist, and spatial geometry data was preserved for each LVOTd measurement to convert DL predictions into metric units. A convolutional neural network based on the U-Net was used as the DL model.
Results: The mean absolute LVOTd error was 1.04 (95% confidence interval [CI] 0.90-1.19) mm for DL predictions on the test set. The mean relative LVOTd errors across all data subgroups ranged from 3.8 to 5.1% for the test set. Generally, the DL model had superior performance on the ZPLAX view compared to the PLAX view. DL model precision for patients with repeated LVOTd measurements had a mean coefficient of variation of 2.2 (95% CI 1.6-2.7) %, which was comparable to the clinicians for the test set.
Conclusion: DL for automatic LVOTd measurements in PLAX and ZPLAX views is feasible when trained on a limited clinical dataset. While the DL predicted LVOTd measurements were within the expected range of clinical inter-observer variability, the robustness of the DL model requires validation on independent datasets. Future experiments using temporal information and anatomical constraints could improve valvular identification and reduce outliers, which are challenges that must be addressed before clinical utilization.
(© 2023. BioMed Central Ltd., part of Springer Nature.)
References: Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC, et al. Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(1):1–64. (PMID: 10.1016/j.echo.2018.06.00430282592)
Baumgartner H, Hung J, Bermejo J, Chambers JB, Edvardsen T, Goldstein S, et al. Recommendations on the echocardiographic Assessment of aortic valve stenosis: a focused update from the European association of cardiovascular imaging and the american society of echocardiography. J Am Soc Echocardiogr. 2017;30(4):372–92. (PMID: 10.1016/j.echo.2017.02.00928385280)
Shiran A, Adawi S, Ganaeem M, Asmer E. Accuracy and reproducibility of left ventricular outflow tract diameter measurement using transthoracic when compared with transesophageal echocardiography in systole and diastole. Eur J Echocardiogr. 2009;10(2):319–24. (PMID: 10.1093/ejechocard/jen25418835821)
Kebed K, Sun D, Addetia K, Mor-Avi V, Markuzon N, Lang RM. Measurement errors in serial echocardiographic assessments of aortic valve stenosis severity. Int J Cardiovasc Imaging. 2020;36(3):471–9. (PMID: 10.1007/s10554-019-01745-z31865497)
Saikrishnan Neelakantan K, Gautam, Sawaya Fadi J, Stamatios L. Yoganathan Ajit P. Accurate Assessment of aortic stenosis. Circulation. 2014;129(2):244–53. (PMID: 10.1161/CIRCULATIONAHA.113.00231024421359)
Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation. 2018;138(16):1623–35. (PMID: 10.1161/CIRCULATIONAHA.118.034338303544596200386)
Leclerc S, Smistad E, Pedrosa J, Østvik A, Cervenansky F, Espinosa F, et al. Deep learning for Segmentation using an Open large-scale dataset in 2D Echocardiography. IEEE Trans Med Imaging. 2019;38(9):2198–210. (PMID: 10.1109/TMI.2019.290051630802851)
Luong C, Liao Z, Abdi A, Girgis H, Rohling R, Gin K, et al. Automated estimation of echocardiogram image quality in hospitalized patients. Int J Cardiovasc Imaging. 2021;37(1):229–39. (PMID: 10.1007/s10554-020-01981-833211237)
Diller GP, Babu-Narayan S, Li W, Radojevic J, Kempny A, Uebing A, et al. Utility of machine learning algorithms in assessing patients with a systemic right ventricle. Eur Heart J Cardiovasc Imaging. 2019;20(8):925–31. (PMID: 10.1093/ehjci/jey211306291276639730)
Ostvik A, Salte IM, Smistad E, Nguyen TM, Melichova D, Brunvand H, et al. Myocardial function imaging in echocardiography using deep learning. IEEE Trans Med Imaging. 2021;40(5):1340–51. (PMID: 10.1109/TMI.2021.305456633493114)
Howard JP, Stowell CC, Cole GD, Ananthan K, Demetrescu CD, Pearce K, et al. Automated left ventricular dimension assessment using artificial intelligence developed and validated by a UK-wide collaborative. Circ Cardiovasc Imaging. 2021;14(5): e011951. (PMID: 10.1161/CIRCIMAGING.120.011951339982478136463)
Gilbert A, Holden M, Eikvil L, Aase SA, Samset E, McLeod K. Automated left ventricle dimension measurement in 2D Cardiac Ultrasound via an Anatomically Meaningful CNN Approach. arXiv:191102448 [cs. eess]. 2019;11798:29–37.
Sofka M, Milletari F, Jia J, Rothberg A, et al. Fully Convolutional Regression Network for Accurate detection of measurement points. In: Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood T, Tavares JMRS, Moradi M, et al., editors. Deep learning in Medical Image Analysis and Multimodal Learning for clinical decision support. Cham: Springer International Publishing; 2017. p. 258–66 (Lecture Notes in Computer Science). (PMID: 10.1007/978-3-319-67558-9_30)
Jafari MH, Girgis H, Van Woudenberg N, Liao Z, Rohling R, Gin K, et al. Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training. Int J Comput Assist Radiol Surg. 2019;14(6):1027–37. (PMID: 10.1007/s11548-019-01954-w30941679)
Andreassen BS, Veronesi F, Gerard O, Solberg AHS, Samset E. Mitral Annulus Segmentation using deep learning in 3-D Transesophageal Echocardiography. IEEE J Biomedical Health Inf. 2020;24(4):994–1003. (PMID: 10.1109/JBHI.2019.2959430)
Smistad E, Dalen H, Grenne B, Løvstakken L. Segmentation of parasternal long axis views using deep learning. In: 2022 IEEE International Ultrasonics Symposium (IUS). 2022. p. 1–4.
Skjaerpe T, Hegrenaes L, Hatle L. Noninvasive estimation of valve area in patients with aortic stenosis by Doppler ultrasound and two-dimensional echocardiography. Circulation. 1985;72(4):810–8. (PMID: 10.1161/01.CIR.72.4.8103896562)
Iakubovskii P. qubvel/segmentation_models. 2022. Available from:  https://github.com/qubvel/segmentation_models . Cited 2022 Mar 1.
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical Image Computing and Computer-Assisted intervention – MICCAI 2015. Cham: Springer International Publishing; 2015. p. 234–41 (Lecture Notes in Computer Science). (PMID: 10.1007/978-3-319-24574-4_28)
Tan M, Le Q, EfficientNet PMLR. 2019. p. 6105–14. Available from: https://proceedings.mlr.press/v97/tan19a.html . Cited 2023 Feb 8.
Nibali A, He Z, Morgan S, Prendergast L. Numerical coordinate regression with convolutional neural networks. arXiv:180107372 [cs]. 2018. Available from: http://arxiv.org/abs/1801.07372 . Cited 2020 Nov 11.
van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, et al. scikit-image: image processing in Python. PeerJ. 2014;2: e453. (PMID: 10.7717/peerj.453250249214081273)
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L, ImageNet. A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. 2009. p. 248–55. (PMID: 10.1109/CVPR.2009.5206848)
Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv:14126980 [cs]. 2017. Available from: http://arxiv.org/abs/1412.6980 . Cited 2021 Sep 5.
Statistical methods for assessing agreement between two methods of clinical. Measurement - ScienceDirect. Available from: https://www.sciencedirect.com/science/article/pii/S0140673686908378?via%3Dihub . Cited 2023 Mar 11.
Colletti PM, Multicenter. Scan-Rescan, Human and Machine Learning CMR Study to Test Generalizability and Precision in Imaging Biomarker Analysis: a solid basis for future work. Circ Cardiovasc Imaging. 2019;12(10):e009759. (PMID: 10.1161/CIRCIMAGING.119.00975931547690)
Martins JFBS, Nascimento ER, Nascimento BR, Sable CA, Beaton AZ, Ribeiro AL, et al. Towards automatic diagnosis of rheumatic heart disease on echocardiographic exams through video-based deep learning. J Am Med Inform Assoc. 2021;28(9):1834–42. (PMID: 10.1093/jamia/ocab061342796368363807)
Østvik A, Smistad E, Aase SA, Haugen BO, Lovstakken L. Real-time standard view classification in transthoracic echocardiography using convolutional neural networks. Ultrasound Med Biol. 2019;45(2):374–84. (PMID: 10.1016/j.ultrasmedbio.2018.07.02430470606)
Jafari MH, Girgis H, Van Woudenberg N, Moulson N, Luong C, Fung A, et al. Cardiac point-of-care to cart-based ultrasound translation using constrained CycleGAN. Int J Comput Assist Radiol Surg. 2020;15(5):877–86. (PMID: 10.1007/s11548-020-02141-y32314226)
معلومات مُعتمدة: Project number 271555/F20 The Research Council of Norway
فهرسة مساهمة: Keywords: Automated measurements; Deep learning; Left ventricular outflow tract; Machine learning; Transthoracic echocardiography
المشرفين على المادة: 0 (Plax)
تواريخ الأحداث: Date Created: 20231013 Date Completed: 20231101 Latest Revision: 20231119
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10571406
DOI: 10.1186/s12947-023-00317-5
PMID: 37833731
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-7120
DOI:10.1186/s12947-023-00317-5