دورية أكاديمية

CD8+ lymphocytes are critical for early control of tuberculosis in macaques.

التفاصيل البيبلوغرافية
العنوان: CD8+ lymphocytes are critical for early control of tuberculosis in macaques.
المؤلفون: Winchell CG; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Nyquist SK; Program in Computational and Systems Biology, Massachusetts Institute of Technology , Cambridge, MA, USA.; Broad Institute, Harvard University and Massachusetts Institute of Technology , Cambridge, MA, USA.; Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.; Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA, USA., Chao MC; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA., Maiello P; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Myers AJ; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Hopkins F; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA., Chase M; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA., Gideon HP; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Patel KV; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Bromley JD; Program in Computational and Systems Biology, Massachusetts Institute of Technology , Cambridge, MA, USA.; Broad Institute, Harvard University and Massachusetts Institute of Technology , Cambridge, MA, USA.; Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.; Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA, USA., Simonson AW; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Floyd-O'Sullivan R; Broad Institute, Harvard University and Massachusetts Institute of Technology , Cambridge, MA, USA.; Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA., Wadsworth M; Broad Institute, Harvard University and Massachusetts Institute of Technology , Cambridge, MA, USA.; Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA., Rosenberg JM; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA., Uddin R; Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA., Hughes T; Broad Institute, Harvard University and Massachusetts Institute of Technology , Cambridge, MA, USA.; Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA., Kelly RJ; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Griffo J; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Tomko J; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Klein E; Division of Laboratory Animal Research, University of Pittsburgh, Pittsburgh, PA, USA., Berger B; Broad Institute, Harvard University and Massachusetts Institute of Technology , Cambridge, MA, USA.; Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA, USA., Scanga CA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA., Mattila J; Department of Infectious Disease and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA., Fortune SM; Broad Institute, Harvard University and Massachusetts Institute of Technology , Cambridge, MA, USA.; Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.; Ragon Institute of MGH, MIT, and Harvard , Cambridge, MA, USA., Shalek AK; Broad Institute, Harvard University and Massachusetts Institute of Technology , Cambridge, MA, USA.; Department of Chemistry, Institute for Medical Engineering and Science, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.; Computer Science and Artificial Intelligence Laboratory and Department of Mathematics, MIT, Cambridge, MA, USA.; Ragon Institute of MGH, MIT, and Harvard , Cambridge, MA, USA., Lin PL; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.; Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA., Flynn JL; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.; Center for Vaccine Research, University of Pittsburgh School of Medicine , Pittsburgh, PA, USA.
المصدر: The Journal of experimental medicine [J Exp Med] 2023 Dec 04; Vol. 220 (12). Date of Electronic Publication: 2023 Oct 16.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Rockefeller University Press Country of Publication: United States NLM ID: 2985109R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1540-9538 (Electronic) Linking ISSN: 00221007 NLM ISO Abbreviation: J Exp Med Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Rockefeller University Press
مواضيع طبية MeSH: Tuberculosis*/microbiology , Mycobacterium tuberculosis*, Animals ; Macaca ; CD8-Positive T-Lymphocytes ; Granuloma ; CD4-Positive T-Lymphocytes
مستخلص: The functional role of CD8+ lymphocytes in tuberculosis remains poorly understood. We depleted innate and/or adaptive CD8+ lymphocytes in macaques and showed that loss of all CD8α+ cells (using anti-CD8α antibody) significantly impaired early control of Mycobacterium tuberculosis (Mtb) infection, leading to increased granulomas, lung inflammation, and bacterial burden. Analysis of barcoded Mtb from infected macaques demonstrated that depletion of all CD8+ lymphocytes allowed increased establishment of Mtb in lungs and dissemination within lungs and to lymph nodes, while depletion of only adaptive CD8+ T cells (with anti-CD8β antibody) worsened bacterial control in lymph nodes. Flow cytometry and single-cell RNA sequencing revealed polyfunctional cytotoxic CD8+ lymphocytes in control granulomas, while CD8-depleted animals were unexpectedly enriched in CD4 and γδ T cells adopting incomplete cytotoxic signatures. Ligand-receptor analyses identified IL-15 signaling in granulomas as a driver of cytotoxic T cells. These data support that CD8+ lymphocytes are required for early protection against Mtb and suggest polyfunctional cytotoxic responses as a vaccine target.
(© 2023 Winchell et al.)
التعليقات: Comment in: J Exp Med. 2023 Dec 4;220(12):. (PMID: 37917028)
References: Nat Methods. 2020 Feb;17(2):159-162. (PMID: 31819264)
Nat Immunol. 2012 Dec;13(12):1187-95. (PMID: 23104097)
PLoS Pathog. 2015 Jan 22;11(1):e1004603. (PMID: 25611466)
Infect Immun. 2018 Jan 22;86(2):. (PMID: 28947646)
N Engl J Med. 2001 Oct 11;345(15):1098-104. (PMID: 11596589)
Nat Commun. 2020 Nov 30;11(1):6077. (PMID: 33257685)
Infect Immun. 2006 Jul;74(7):3790-803. (PMID: 16790751)
Cell Mol Immunol. 2018 Mar;15(3):216-225. (PMID: 29176747)
Am J Respir Crit Care Med. 2016 Aug 1;194(3):345-55. (PMID: 26882070)
J Vis Exp. 2017 Sep 5;(127):. (PMID: 28930979)
Semin Immunopathol. 2015 May;37(3):239-49. (PMID: 25917388)
Infect Immun. 2014 Jun;82(6):2400-4. (PMID: 24664509)
J Clin Invest. 2020 Jan 2;130(1):214-230. (PMID: 31763997)
Front Immunol. 2017 Oct 05;8:1262. (PMID: 29051764)
Sci Rep. 2017 Jan 03;7:39921. (PMID: 28045081)
Immunity. 1995 Jun;2(6):561-72. (PMID: 7540941)
Nucleic Acids Res. 2012 May;40(10):4288-97. (PMID: 22287627)
Eur J Immunol. 2015 Apr;45(4):1069-81. (PMID: 25631937)
J Immunol. 2003 May 15;170(10):5018-26. (PMID: 12734346)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Nat Med. 2018 Feb;24(2):130-143. (PMID: 29334373)
Nat Med. 2014 Jan;20(1):75-9. (PMID: 24336248)
Immunity. 2020 Oct 13;53(4):878-894.e7. (PMID: 33053333)
Science. 2017 Apr 21;356(6335):. (PMID: 28428369)
Nature. 2018 Aug;560(7720):644-648. (PMID: 30135583)
Genome Biol. 2018 Feb 6;19(1):15. (PMID: 29409532)
Immunity. 2022 May 10;55(5):827-846.e10. (PMID: 35483355)
NPJ Vaccines. 2017;2:. (PMID: 28775896)
Nat Commun. 2019 Oct 17;10(1):4706. (PMID: 31624246)
Nat Methods. 2019 Dec;16(12):1289-1296. (PMID: 31740819)
Sci Immunol. 2018 Aug 31;3(26):. (PMID: 30171080)
Nat Genet. 2000 May;25(1):25-9. (PMID: 10802651)
Nature. 2020 Jan;577(7788):95-102. (PMID: 31894150)
mBio. 2017 May 9;8(3):. (PMID: 28487426)
Nat Methods. 2020 Feb;17(2):137-145. (PMID: 31792435)
Cell Mol Immunol. 2018 Mar;15(3):206-215. (PMID: 29151578)
Bioinformatics. 2023 Jan 1;39(1):. (PMID: 36426870)
Science. 1998 Oct 2;282(5386):121-5. (PMID: 9756476)
Genome Res. 2009 Sep;19(9):1639-45. (PMID: 19541911)
AIDS Res Hum Retroviruses. 2012 Dec;28(12):1693-702. (PMID: 22480184)
J Exp Med. 2018 Jul 2;215(7):1823-1838. (PMID: 29773644)
J Immunol. 2020 Feb 1;204(3):644-659. (PMID: 31862711)
Immunol Rev. 2021 May;301(1):30-47. (PMID: 33529407)
J Exp Med. 1993 Dec 1;178(6):2249-54. (PMID: 7504064)
Cell Syst. 2019 Apr 24;8(4):281-291.e9. (PMID: 30954476)
Nat Med. 2019 Feb;25(2):255-262. (PMID: 30664782)
J Exp Med. 1993 Dec 1;178(6):2243-7. (PMID: 8245795)
Front Immunol. 2022 Sep 13;13:985405. (PMID: 36189279)
Cell Rep. 2022 May 17;39(7):110826. (PMID: 35584684)
Vaccine. 2019 May 21;37(23):3022-3030. (PMID: 31040086)
J Exp Med. 2009 Jan 16;206(1):25-34. (PMID: 19103877)
Eur Respir J. 2019 May 30;53(5):. (PMID: 30923183)
PLoS Pathog. 2018 Oct 12;14(10):e1007305. (PMID: 30312351)
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):599-608. (PMID: 30587590)
Nat Methods. 2017 Apr;14(4):395-398. (PMID: 28192419)
Proc Natl Acad Sci U S A. 2019 Mar 26;116(13):6371-6378. (PMID: 30850538)
Lancet Respir Med. 2019 Sep;7(9):810-819. (PMID: 31416767)
PLoS Pathog. 2009 Apr;5(4):e1000392. (PMID: 19381260)
معلومات مُعتمدة: KL2 TR002542 United States TR NCATS NIH HHS; 75N93019C00071 United States AI NIAID NIH HHS; P40 OD028116 United States OD NIH HHS; T32 AI089443 United States AI NIAID NIH HHS; P30 AI060354 United States AI NIAID NIH HHS; R56 AI139053 United States AI NIAID NIH HHS; K12 HL143886 United States HL NHLBI NIH HHS; U24 AI126683 United States AI NIAID NIH HHS
تواريخ الأحداث: Date Created: 20231016 Date Completed: 20231023 Latest Revision: 20240423
رمز التحديث: 20240423
مُعرف محوري في PubMed: PMC10579699
DOI: 10.1084/jem.20230707
PMID: 37843832
قاعدة البيانات: MEDLINE
الوصف
تدمد:1540-9538
DOI:10.1084/jem.20230707