دورية أكاديمية

Environmental implications of phosphate-based fertilizer industrial waste and its management practices.

التفاصيل البيبلوغرافية
العنوان: Environmental implications of phosphate-based fertilizer industrial waste and its management practices.
المؤلفون: Ahmad N; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan., Usman M; Key Laboratory of Integrated Regulation and Resource Development On Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China., Ahmad HR; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan., Sabir M; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan., Farooqi ZUR; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan., Shehzad MT; Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan. muhammad.shehzad@uaf.edu.pk.
المصدر: Environmental monitoring and assessment [Environ Monit Assess] 2023 Oct 16; Vol. 195 (11), pp. 1326. Date of Electronic Publication: 2023 Oct 16.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 8508350 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-2959 (Electronic) Linking ISSN: 01676369 NLM ISO Abbreviation: Environ Monit Assess Subsets: MEDLINE
أسماء مطبوعة: Publication: 1998- : Dordrecht : Springer
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
مواضيع طبية MeSH: Phosphates*/analysis , Fertilizers*, Humans ; Industrial Waste/analysis ; Environmental Monitoring ; Phosphorus/analysis ; Soil ; Plants ; Water
مستخلص: During the green revolution in the mid-twentieth century, the consumption of inorganic phosphorous and phosphate-based fertilizers (P-fertilizers) in the developing world skyrocketed, resulting in a proliferation of P-fertilizer industries. Phosphate-based fertilizer industries are ranked among the most environment-polluting industries. The worldwide phosphorus market, which was 68.5 million metric tons in 2020, is expected to increase at a compound annual growth rate (CAGR) of 2.5% to 81 million metric tons by 2027. The release of untreated hazardous pollutants from these fertilizer industries into the soil, water, and atmosphere has resulted in severe environmental health issues. Excessive surface runoff of phosphorus from agricultural fields and its deposition in water promote the growth of algae and macrophytes and lower dissolved oxygen concentration through eutrophication, which is detrimental to aquatic life. Fluorides (F - ) and sulfur dioxide (SO 2 ) and/or heavy metals (potentially toxic elements, PTEs) are also detected in the emissions from these fertilizer industries. The main solid waste generated from the phospho-gypsum plant produced up to 5 tons of di-hydrogen phosphate (H 2 PO 4 ), including PTEs and radioactive substances. Phosphates and fluorenes from these industries are usually disposed of as sludge in storage ponds or trash piles. Humans inhaling poisonous gases released from the P-fertilizer industries can develop hepatic failure, autoimmune diseases, pulmonary disorders, and other health problems. The objectives of this review are to provide guidelines for eliminating the bottleneck pollutions that occur from the phosphate-based fertilizer industries and explore the management practices for its green development.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Aagli, A., Tamer, N., Atbir, A., Boukbir, L., & El Hadek, M. (2005). Conversion of phosphogypsum to potassium sulfate: Part I. The effect of temperature on the solubility of calcium sulfate in concentrated aqueous chloride solutions. Journal of thermal analysis and calorimetry, 82(2), 395–399. (PMID: 10.1007/s10973-005-0908-y)
Abbady, A. G., Uosif, M. A. M., & El-Taher, A. (2005). Natural radioactivity and dose assessment for phosphate rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt. Journal of Environmental Radioactivity, 84(1), 65–78. (PMID: 10.1016/j.jenvrad.2005.04.003)
Abbady, A. (2005). Assessment of the natural radioactivity and its radiological hazards in some Egyptian rock phosphates.
Abbasi, T., Poornima, P., Kannadasan, T., & Abbasi, S. A. (2013). Acid rain: Past, present, and future. International Journal of Environmental Engineering, 5(3), 229–272. (PMID: 10.1504/IJEE.2013.054703)
Ahmad, N., & Tariq, H. (2021). Azolla as waste decomposer and bio-fertilizer: A review. Journal of Applied Research in Plant Sciences, 2(1), 108–116. (PMID: 10.38211/joarps.2021.2.1.14)
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019.
Apodaca, L. E., d’Aquin, G. E., & Fell, R. C. (2017). Sulfur and sulfuric acid. In Handbook of Industrial Chemistry and Biotechnology (pp. 1241–1266). Springer, Cham.
Aswood, M. S., Jaafar, M. S., & Bauk, S. (2014). Measuring radon concentration levels in fertilizers using CR-39 detector. In Advanced Materials Research, 925, 610–613. (PMID: 10.4028/www.scientific.net/AMR.925.610)
Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., & Mahvi, A. H. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160(1), 83–89. (PMID: 10.1007/s10661-008-0659-x)
Awuah, J. (2017). Impact of fire history on carbon storage and vegetation structure in the savanna ecosystem of mole national park in the Northern region of Ghana (Master’s thesis, NTNU).
Barache, U. B., Shaikh, A. B., Lokhande, T. N., Kamble, G. S., Anuse, M. A., & Gaikwad, S. H. (2018). An efficient, cost effective, sensing behaviour liquid-liquid extraction and spectrophotometric determination of copper (II) incorporated with 4-(4′-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole: Analysis of food samples, leafy vegetables, fertilizers and environmental samples. Spectrochimica Acta Part a: Molecular and Biomolecular Spectroscopy, 189, 443–453. (PMID: 10.1016/j.saa.2017.08.054)
Basak, N., Sheoran, P., Sharma, R., Yadav, R. K., Singh, R. K., Kumar, S., & Sharma, P. C. (2021). Gypsum and pressmud amelioration improve soil organic carbon storage and stability in sodic agroecosystems. Land Degradation & Development, 32(15), 4430–4444. (PMID: 10.1002/ldr.4047)
Birky, B. K. (2017). Phosphorus and phosphates. In Handbook of Industrial Chemistry and Biotechnology (pp. 1211–1239). Springer, Cham.
Boscak, V. G. (1979). Evaluation of control technology for the phosphate fertilizer industry. Final report July 1978-June 1979 (No. PB-102247). Research Corp. of New England, Wethersfield, CT (USA).
Brigden, K., Stringer, R., & Santillo, D. (2002). Heavy metal and radionuclide contamination of fertilizer products and phosphogypsum waste produced by The Lebanese Chemical Company, Lebanon, 2002. Greenpeace Research Laboratories, Department of Biological Sciences, University of Exeter, Exeter EX4 4PS, UK.
Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799. (PMID: 10.1016/j.jece.2017.05.029)
Cevik, U. ĞU. R., Baltas, H., Tabak, A. H. M. E. T., & Damla, N. (2010). Radiological and chemical assessment of phosphate rocks in some countries. Journal of Hazardous Materials, 182(1–3), 531–535. (PMID: 10.1016/j.jhazmat.2010.06.064)
Cheremisinoff, P. N. (2002). Handbook of air pollution prevention and control. Elsevier.
Cheremisinoff, P. N. (1995). Industry Profile-Fertilizers. In Cheremisinoff, P. N. (Ed.), Waste minimization and cost reduction for the process industries. William Andrew Publishing. Pp 222–284.
Chernysh, Y., Yakhnenko, O., Chubur, V., & Roubík, H. (2021). Phosphogypsum recycling: A review of environmental issues, current trends, and prospects. Applied Sciences, 11(4), 1575. (PMID: 10.3390/app11041575)
Dave, D. M., & Yang, M. (2020). Lead in drinking water and birth outcomes: A tale of two water treatment plants (No. w27996). National Bureau of Economic Research.
Devrajani, S. K., Qureshi, M., Imran, U., & Nisa, T. U. (2020). Impact of gaseous air pollutants on agricultural crops in developing countries: A review. Journal of Environmental Science and Public Health, 4(2), 71–82.
Dissanayake, C. B., & Chandrajith, R. (2009). Phosphate mineral fertilizers, trace metals and human health. Journal of the National Science Foundation of Sri Lanka, 37(3), 153–165. (PMID: 10.4038/jnsfsr.v37i3.1219)
Dove, C. D., Chang, G. C., Yuen-Ming, K. U. N. G., Hung-Wen, C. H. A. N., & Hsu, W. H. (2018). U.S. Patent No. 9,926,198. Washington, DC: U.S. Patent and Trademark Office.
Edelstein, M., & Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431–444. (PMID: 10.1016/j.scienta.2017.12.039)
El-Zakla, T., Abdel-Ghny, H. A., & Hassan, A. M. (2007). Natural radioactivity of some local fertilizers. Romanian Journal of Physics, 52(5–7), 731–739.
Fayiga, A. O., & Nwoke, O. C. (2016). Phosphate rock: Origin, importance, environmental impacts, and future roles. Environmental Reviews, 24(4), 403–415. (PMID: 10.1139/er-2016-0003)
Fiol, N., Escudero, C., & Villaescusa, I. (2008). Chromium sorption and Cr (VI) reduction to Cr (III) by grape stalks and yohimbe bark. Bioresource Technology, 99(11), 5030–5036. (PMID: 10.1016/j.biortech.2007.09.007)
García-Labiano, F., de Diego, L. F., Cabello, A., Gayán, P., Abad, A., Adánez, J., & Sprachmann, G. (2016). Sulphuric acid production via chemical looping combustion of elemental sulphur. Applied Energy, 178, 736–745. (PMID: 10.1016/j.apenergy.2016.06.110)
Gehle, K. (2009). ATSDR case studies in environmental medicine: Arsenic toxicity. Vol: GRA and I, issue: GRA and I, 1–124.
Golwalkar, K. R. (2019). Integrated maintenance and energy management in the chemical industries. Springer Nature.
Hassan, N. M., Mansour, N. A., Fayez-Hassan, M., & Sedqy, E. (2016). Assessment of natural radioactivity in fertilizers and phosphate ores in Egypt. Journal of Taibah University for Science, 10(2), 296–306. (PMID: 10.1016/j.jtusci.2015.08.009)
Hellal, F., El-Sayed, S., Zewainy, R., & Amer, A. (2019). Importance of phosphate pock application for sustaining agricultural production in Egypt. Bulletin of the National Research Centre, 43(1), 1–11. (PMID: 10.1186/s42269-019-0050-9)
Igwe, J., & Abia, A. A. (2006). A bioseparation process for removing heavy metals from waste water using biosorbents. African journal of biotechnology, 5(11).
Kalsoom, M., Rehman, F. U., Shafique, T. A. L. H. A., Junaid, S. A. N. W. A. L., Khalid, N., Adnan, M., & Ali, H. (2020). Biological importance of microbes in agriculture, food and pharmaceutical industry: A review. Innovare Journal of Life Science, 8(6), 1–4. (PMID: 10.22159/ijls.2020.v8i6.39845)
Khan, M., Ahmad, S., Sharif, M., Billah, M., & Aslam, M. (2012). Formulation of single super phosphate fertilizer from rock phosphate of Hazara, Pakistan. Soil & Environment, 31(1).
Khater, A. E., Higgy, R. H., & Pimpl, M. (2001). Radiological impacts of natural radioactivity in Abu-Tartor phosphate deposits, Egypt. Journal of Environmental Radioactivity, 55(3), 255–267. (PMID: 10.1016/S0265-931X(00)00193-4)
Khatun, L., Ali, M. A., Sumon, M. H., Islam, M. B., & Khatun, F. (2020). Mitigation rice yield scaled methane emission and soil salinity stress with feasible soil amendments. Journal of Agricultural Chemistry and Environment, 10(01), 16. (PMID: 10.4236/jacen.2021.101002)
Kırılmaz, O., & Erol, S. (2017). A proactive approach to supply chain risk management: Shifting orders among suppliers to mitigate the supply side risks. Journal of Purchasing and Supply Management, 23(1), 54–65. (PMID: 10.1016/j.pursup.2016.04.002)
Kolala, C., & Dokowe, A. (2021). Economic potential of industrial minerals in Zambia-a review. Resources Policy, 72, 101997. (PMID: 10.1016/j.resourpol.2021.101997)
Kolo, M. T. (2014). Natural radioactivity and environmental risk assessment of Sokoto phosphate rock, Northwest Nigeria. African Journal of Environmental Science and Technology, 8(9), 532–538. (PMID: 10.5897/AJEST2014.1750)
Korany, K. A., Masoud, A. M., Rushdy, O. E., Alrowaili, Z. A., Hassanein, F. H., & Taha, M. H. (2021). Phosphate, phosphoric acid and phosphogypsum natural radioactivity and radiological hazards parameters. Journal of Radioanalytical and Nuclear Chemistry, 1–9.
Kratz, S., Schick, J., & Schnug, E. (2016). Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Science of the Total Environment, 542, 1013–1019. (PMID: 10.1016/j.scitotenv.2015.08.046)
Kratz, S., & Schnug, E. (2006). Rock phosphates and P fertilizers as sources of U contamination in agricultural soils. In Uranium in the environment (pp. 57–67). Springer, Berlin, Heidelberg.
Lave, L. B., & Seskin, E. P. (2013). Air pollution and human health. RFF Press: Routledge. (PMID: 10.4324/9781315064451)
Lawrencia, D., Wong, S. K., Low, D. Y. S., Goh, B. H., Goh, J. K., Ruktanonchai, U. R., ... & Tang, S. Y. (2021). Controlled release fertilizers: A review on coating materials and mechanism of release. Plants, 10(2), 238.
Lemessa, A., Birlie, M., Kassahun, M., Mengistu, Y. (2022). Process revamping of H2SO4 plant to double contact double absorption (DCDA) using ASPEN HYSYS to reduce SO2 emission: Case of Awash Melkassa sulfuric acid factory. In: Berihun, M.L. (eds) Advances of science and technology. ICAST 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 411. Springer, Cham. https://doi.org/10.1007/978-3-030-93709-6_5 .
Lepp, N. W. (Ed.). (2012). Effect of heavy metal pollution on plants: Effects of trace metals on plant function. Springer Science & Business Media.
Leuenberger, A., Winkler, M. S., Cambaco, O., Cossa, H., Kihwele, F., Lyatuu, I., ... & Munguambe, K. (2021). Health impacts of industrial mining on surrounding communities: Local perspectives from three sub-Saharan African countries. PloS one, 16(6), e0252433.
Li, Y., Shang, J., Zhang, C., Zhang, W., Niu, L., Wang, L., & Zhang, H. (2021). The role of freshwater eutrophication in greenhouse gas emissions: A review. Science of The Total Environment, 144582.
Liang, H., Zhang, P., Jin, Z., & DePaoli, D. (2017). Rare earths recovery and gypsum upgrade from Florida phosphogypsum. Minerals & Metallurgical Processing, 34, 201–206. (PMID: 10.19150/mmp.7860)
Liu, L., Li, W., Song, W., & Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment, 633, 206–219. (PMID: 10.1016/j.scitotenv.2018.03.161)
Liu, H., Hu, G., Basar, I. A., Li, J., Lyczko, N., Nzihou, A., & Eskicioglu, C. (2021). Phosphorus recovery from municipal sludge-derived ash and hydrochar through wet-chemical technology: A review towards sustainable waste management. Chemical Engineering Journal, 417, 129300. (PMID: 10.1016/j.cej.2021.129300)
Losacco, C., & Perillo, A. (2018). Particulate matter air pollution and respiratory impact on humans and animals. Environmental Science and Pollution Research, 25(34), 33901–33910. (PMID: 10.1007/s11356-018-3344-9)
Lütke, S. F., Oliveira, M. L., Silva, L. F., Cadaval, T. R., Jr., & Dotto, G. L. (2020). Nanominerals assemblages and hazardous elements assessment in phosphogypsum from an abandoned phosphate fertilizer industry. Chemosphere, 256, 127138. (PMID: 10.1016/j.chemosphere.2020.127138)
Ma, S., Hu, S., Chen, D., & Zhu, B. (2015). A case study of a phosphorus chemical firm’s application of resource efficiency and eco-efficiency in industrial metabolism under circular economy. Journal of Cleaner Production, 87, 839–849. (PMID: 10.1016/j.jclepro.2014.10.059)
Maiga, A., Diallo, D., Bye, R., & Paulsen, B. S. (2005). Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. Journal of Agricultural and Food Chemistry, 53(6), 2316–2321. (PMID: 10.1021/jf040436o)
Majumdar, D. (2021). Air, noise and odour pollution and control technologies. Environmental management: Issues and concerns in developing countries, 61–78.
Mandinic, Z., Curcic, M., Antonijevic, B., Carevic, M., Mandic, J., Djukic-Cosic, D., & Lekic, C. P. (2010). Fluoride in drinking water and dental fluorosis. Science of the Total Environment, 408(17), 3507–3512. (PMID: 10.1016/j.scitotenv.2010.04.029)
Mashitah, M. D., Azila, Y. Y., & Bhatia, S. (2008). Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution. Bioresource Technology, 99(11), 4742–4748. (PMID: 10.1016/j.biortech.2007.09.062)
Mercier, J. R. (2008). The World Bank and environmental impact assessment. In Theory and practice of transboundary environmental impact assessment. Pp. 289–311.
Mishra, C. S. K., Nayak, S. O. U. M. Y. A., Guru, B. C., & Rath, M. O. N. A. L. I. S. A. (2010). Environmental impact and management of wastes from phosphate fertilizer plants. Journal of Industrial Pollution Control, 26(1), 57–60.
Moeller, W., & Winkler, K. (1968). The double contact process for sulfuric acid production. Journal of the Air Pollution Control Association, 18(5), 324–325. (PMID: 10.1080/00022470.1968.10469134)
Nie, Y., Wang, X., Dai, J., Wang, C., He, D., & Mei, Y. (2021). Mutual promotion effect of SO2 and NOx during yellow phosphorus and phosphate rock slurry adsorption process. AIChE Journal, e17236.
Oni, A. O., Fadare, D. A., Sharma, S., & Rangaiah, G. P. (2018). Multi-objective optimisation of a double contact double absorption sulphuric acid plant for cleaner operation. Journal of Cleaner Production, 181, 652–662. (PMID: 10.1016/j.jclepro.2018.01.239)
Pandey, J., & Pandey, U. (2011). Fluoride contamination and fluorosis in rural community in the vicinity of a phosphate fertilizer factory in India. Bulletin of Environmental Contamination and Toxicology, 87(3), 245. (PMID: 10.1007/s00128-011-0344-6)
Ramteke, L. P., Sarode, D. D., Marathe, Y. S., & Ghosh, P. K. (2021). Removal of fluoride contaminant in phosphate fertilizers through solid state thermal treatment. Journal of Fluorine Chemistry, 241, 109693. (PMID: 10.1016/j.jfluchem.2020.109693)
Raniro, H. R., Teles, A. P. B., Adam, C., & Pavinato, P. S. (2022). Phosphorus solubility and dynamics in a tropical soil under sources derived from wastewater and sewage sludge. Journal of Environmental Management, 302, 113984. (PMID: 10.1016/j.jenvman.2021.113984)
Roy, P., & Sardar, A. (2015). SO2 emission control and finding a way out to produce sulphuric acid from industrial SO2 emission. Journal Chemical Engineering Process Technology, 6(2).
Saadaoui, E., Ghazel, N., Ben Romdhane, C., & Massoudi, N. (2017). Phosphogypsum: Potential uses and problems–A review. International Journal of Environmental Studies, 74(4), 558–567. (PMID: 10.1080/00207233.2017.1330582)
Sajid, M., Bary, G., Asim, M., Ahmad, R., Ahamad, M. I., Alotaibi, H., Rehman, A., Khan, I., & Guoliang, Y. (2022). Synoptic view on P ore beneficiation techniques. Alexandria Engineering Journal, 61(4), 3069–3092. (PMID: 10.1016/j.aej.2021.08.039)
Saumya, S. M., & Basha, P. M. (2017). Fluoride exposure aggravates the testicular damage and sperm quality in diabetic mice: Protective role of ginseng and banaba. Biological Trace Element Research, 177(2), 331–344. (PMID: 10.1007/s12011-016-0893-y)
Shima, M. (2017). Health effects of air pollution: A historical review and present status. Nihon eiseigaku zasshi. Japanese journal of hygiene, 72(3), 159–165.
Silbajoris, R., Osornio-Vargas, A. R., Simmons, S. O., Reed, W., Bromberg, P. A., Dailey, L. A., & Samet, J. M. (2011). Ambient particulate matter induces interleukin-8 expression through an alternative NF-κB (nuclear factor-kappa B) mechanism in human airway epithelial cells. Environmental Health Perspectives, 119(10), 1379–1383. (PMID: 10.1289/ehp.1103594)
Soanes, C., & Hawker, S. (2003). Compact Oxford english dictionary. Oxford University Press.
Su, C. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24.
Sundara, B., Natarajan, V., & Hari, K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Research, 77(1), 43–49. (PMID: 10.1016/S0378-4290(02)00048-5)
Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., & López-Delgado, A. (2009). Environmental impact and management of phosphogypsum. Journal of Environmental Management, 90(8), 2377–2386. (PMID: 10.1016/j.jenvman.2009.03.007)
Tufail, M., Akhtar, N., & Waqas, M. (2006). Radioactive rock phosphate: The feed stock of phosphate fertilizers used in Pakistan. Health Physics, 90(4), 361–370. (PMID: 10.1097/01.HP.0000180772.73150.aa)
Uosif, M. A. M., & El-Taher, A. (2008). Radiological assessment of Abu-Tartur phosphate, western desert Egypt. Radiation Protection Dosimetry, 130(2), 228–235. (PMID: 10.1093/rpd/ncm502)
Vogel, C., Helfenstein, J., Massey, M. S., Sekine, R., Kretzschmar, R., Beiping, L., ... & Frossard, E. (2021). Microspectroscopy reveals dust-derived apatite grains in acidic, highly-weathered Hawaiian soils. Geoderma, 381, 114681.
Wan, K., Huang, L., Yan, J., Ma, B., Huang, X., Luo, Z., ... & Xiao, T. (2021). Removal of fluoride from industrial wastewater by using different adsorbents: A review. Science of the Total Environment, 145535.
Wass, T., & Gallagher, K. (2008). Evaluation of heavy metal levels in relation to ionic foot bath sessions with the Ioncleanse®. Center for Research Strategies.
Xiao, C., Zhou, Y., Hu, J., Guo, S., Zhou, N., & Chi, R. (2020). Biosolubilization of low-grade rock phosphate by native microbial consortia from phosphate mines: Effect of sampling sources and culture media. Geomicrobiology Journal, 37(9), 859–866. (PMID: 10.1080/01490451.2020.1793033)
Xu, Y., Li, S., Zhou, X., Shahzad, U., & Zhao, X. (2022). How environmental regulations affect the development of green finance: Recent evidence from polluting firms in China. Renewable Energy, 189, 917–926. (PMID: 10.1016/j.renene.2022.03.020)
Zueva, S. B., Ferella, F., Taglieri, G., De Michelis, I., Pugacheva, I., & Vegliò, F. (2020). Zero-liquid discharge treatment of wastewater from a fertilizer factory. Sustainability, 12(1), 397. (PMID: 10.3390/su12010397)
فهرسة مساهمة: Keywords: Eutrophication; Fluorides; Inorganic phosphorous; Potentially toxic elements; Sludge
المشرفين على المادة: 0 (Phosphates)
0 (Fertilizers)
0 (Industrial Waste)
27YLU75U4W (Phosphorus)
0 (Soil)
059QF0KO0R (Water)
تواريخ الأحداث: Date Created: 20231016 Date Completed: 20231101 Latest Revision: 20231110
رمز التحديث: 20231215
DOI: 10.1007/s10661-023-11958-4
PMID: 37845569
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2959
DOI:10.1007/s10661-023-11958-4