دورية أكاديمية

Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice.

التفاصيل البيبلوغرافية
العنوان: Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice.
المؤلفون: Duarte TL; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. tduarte@ibmc.up.pt.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal. tduarte@ibmc.up.pt., Lopes M; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal., Oliveira M; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal., Santos AG; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal., Vasco C; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal., Reis JP; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal., Antunes AR; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal., Gonçalves A; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal., Chacim S; Serviço de Hematologia e Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal., Oliveira C; Laboratório de Citogenética, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal., Porto B; Laboratório de Citogenética, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal., Teles MJ; Departmento de Patologia Clínica, Centro Hospitalar Universitário São João, Porto, Portugal., Moreira AC; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal., Silva AMN; LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.; LAQV-REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal., Schwessinger R; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.; MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK., Drakesmith H; MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK., Henrique R; Serviço de Anatomia Patológica, IPO Porto, Porto, Portugal.; Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal., Porto G; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.; Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.; Serviço de Imuno-hemoterapia, Centro Hospitalar Universitário de Santo António (CHUdSA), Porto, Portugal., Duarte D; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal. delfimd@med.up.pt.; Serviço de Hematologia e Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto Francisco Gentil, E.P.E. (IPO Porto), Porto, Portugal. delfimd@med.up.pt.; Departmento de Biomedicina, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal. delfimd@med.up.pt.; P.CCC - Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal. delfimd@med.up.pt.
المصدر: Leukemia [Leukemia] 2024 Jan; Vol. 38 (1), pp. 96-108. Date of Electronic Publication: 2023 Oct 19.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group, Specialist Journals Country of Publication: England NLM ID: 8704895 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5551 (Electronic) Linking ISSN: 08876924 NLM ISO Abbreviation: Leukemia Subsets: MEDLINE
أسماء مطبوعة: Publication: 2000- : London : Nature Publishing Group, Specialist Journals
Original Publication: [Baltimore, Md.] : Williams & Wilkins, [c1987-
مواضيع طبية MeSH: Anemia*/metabolism , Hemochromatosis*/genetics , Hemochromatosis*/metabolism , Iron Overload*/genetics , Iron Overload*/metabolism , Myelodysplastic Syndromes*/genetics, Animals ; Humans ; Mice ; Erythropoiesis/genetics ; Mice, Knockout ; NF-E2-Related Factor 2/genetics ; NF-E2-Related Factor 2/metabolism
مستخلص: Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2 -/- with hemochromatosis (Hfe -/- ) or hepcidin-null (Hamp1 -/- ) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1 -/- mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1 -/- BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol. 2016;172:512–23. (PMID: 26491866)
Cazzola M. Ineffective erythropoiesis and its treatment. Blood. 2022;139:2460–70. (PMID: 34932791)
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/Dendritic neoplasms. Leukemia. 2022;36:1703–19. (PMID: 357328319252913)
Greenberg PL, Stone RM, Al-Kali A, Barta SK, Bejar R, Bennett JM, et al. Myelodysplastic Syndromes, Version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:60–87.
Shallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol. 2018;101:260–71. (PMID: 29742289)
Tria FP IV, Ang DC, Fan G. Myelodysplastic syndrome: diagnosis and screening. Diagnostics. 2022;12:1581. (PMID: 358854879319204)
Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109:1536–42. (PMID: 17345612)
Rollison DE, Howlader N, Smith MT, Strom SS, Merritt WD, Ries LA, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112:45–52. (PMID: 18443215)
Goldberg SL, Chen E, Corral M, Guo A, Mody-Patel N, Pecora AL, et al. Incidence and clinical complications of myelodysplastic syndromes among United States Medicare beneficiaries. J Clin Oncol. 2010;28:2847–52. (PMID: 20421543)
Greenberg PL, Rigsby CK, Stone RM, Deeg HJ, Gore SD, Millenson MM, et al. NCCN Task Force: Transfusion and iron overload in patients with myelodysplastic syndromes. J Natl Compr Cancer Netw. 2009;7:S1–S16.
Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202:199–211. (PMID: 15629195)
Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol. 2015;6:226–39. (PMID: 262850724543215)
Peddie CM, Wolf CR, McLellan LI, Collins AR, Bowen DT. Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-alpha concentration. Br J Haematol. 1997;99:625–31. (PMID: 9401076)
Cortelezzi A, Cattaneo C, Cristiani S, Duca L, Sarina B, Deliliers GL, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematol J. 2000;1:153–8. (PMID: 11920184)
Farquhar MJ, Bowen DT. Oxidative stress and the myelodysplastic syndromes. Int J Hematol. 2003;77:342–50. (PMID: 12774921)
Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. Eur J Haematol. 2007;79:463–467. (PMID: 17976187)
Novotna B, Bagryantseva Y, Siskova M, Neuwirtova R. Oxidative DNA damage in bone marrow cells of patients with low-risk myelodysplastic syndrome. Leuk Res. 2009;33:340–343. (PMID: 18687469)
De Souza GF, Ribeiro HL Jr, De Sousa JC, Heredia FF, De Freitas RM, Martins MR, et al. HFE gene mutation and oxidative damage biomarkers in patients with myelodysplastic syndromes and its relation to transfusional iron overload: an observational cross-sectional study. BMJ Open. 2015;5:e006048. (PMID: 258412324390728)
Borgna-Pignatti C, Rugolotto S, De Stefano P, Zhao H, Cappellini MD, Del Vecchio GC, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89:1187–93. (PMID: 15477202)
Badawi MA, Vickars LM, Chase JM, Leitch HA. Red blood cell transfusion independence following the initiation of iron chelation therapy in myelodysplastic syndrome. Adv Hematol. 2010;2010:164045. (PMID: 203687732846339)
Angelucci E, Li J, Greenberg P, Wu D, Hou M, Montano Figueroa EH, et al. Iron chelation in transfusion-dependent patients with low- to intermediate-1-risk myelodysplastic syndromes: a randomized trial. Ann Intern Med. 2020;172:513–22. (PMID: 32203980)
An W, Feola M, Aluri S, Ruiz-Martinez M, Shridharan A, Levy M, et al. Iron chelation improves ineffective erythropoiesis and iron overload in myelodysplastic syndrome mice. 2022. bioRxiv. https://doi.org/10.1101/2022.10.05.510967 .
Gattermann N. Iron overload in myelodysplastic syndromes (MDS). Int J Hematol. 2018;107:55–63. (PMID: 29177643)
Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004;24:8477–86. (PMID: 15367669516753)
Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24:7130–7139. (PMID: 15282312479737)
Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox- regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24:10941–53. (PMID: 15572695533977)
Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant responsive element. Biochem Biophys Res Commun. 1997;236:313–22. (PMID: 9240432)
Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18:295–317. (PMID: 30610225)
Silva-Gomes S, Santos AG, Caldas C, Silva CM, Neves JV, Lopes J, et al. Transcription factor NRF2 protects mice against dietary iron-induced liver injury by preventing hepatocytic cell death. J Hepatol. 2014;60:354–61. (PMID: 24021424)
Lim PJ, Duarte TL, Arezes J, Garcia-Santos D, Hamdi A, Pasricha SR, et al. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab. 2019;1:519–31. (PMID: 312761026609153)
Duarte TL, Caldas C, Santos AG, Silva-Gomes S, Santos-Gonçalves A, Martins MJ, et al. Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biol. 2017;11:157–69. (PMID: 27936457)
Girelli D, Busti F, Brissot P, Cabantchik I, Muckenthaler MU, Porto G. Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood. 2022;139:3018–29. (PMID: 34601591)
European Association for the Study of the Liver. EASL Clinical Practice Guidelines on haemochromatosis. J Hepatol. 2022;77:479–502.
McGarry MP, Protheroe CA, Lee JJ. Mouse hematology: a laboratory manual. NY: Cold Spring Harbor Laboratory Press; 2010.
Lopes M, Duarte TL, Teles MJ, Mosteo L, Chacim S, Aguiar E, et al. Loss of erythroblasts in acute myeloid leukemia causes iron redistribution with clinical implications. Blood Adv. 2021;5:3102–12. (PMID: 344028838405200)
Duarte TL, Neves JV. Measurement of Tissue Non-Heme Iron Content using a Bathophenanthroline-Based Colorimetric Assay. J Vis Exp. 2022. https://doi.org/10.3791/63469 .
Carvalho F, Remião F, Soares ME, Catarino R, Queiroz G, Bastos ML. d-Amphetamine-induced hepatotoxicity: possible contribution of catecholamines and hyperthermia to the effect studied in isolated rat hepatocytes. Arch Toxicol. 1997;71:429–36. (PMID: 9209688)
Silva-Gomes S, Bouton C, Silva T, Santambrogio P, Rodrigues P, Appelberg R, et al. Mycobacterium avium infection induces H-ferritin expression in mouse primary macrophages by activating Toll-like receptor 2. PLoS ONE. 2013;8:e82874. (PMID: 243493833857292)
Delaby C, Pilard N, Hetet G, Driss F, Grandchamp B, Beaumont C, et al. A physiological model to study iron recycling in macrophages. Exp Cell Res. 2005;310:43–53. (PMID: 16095591)
Mosteo L, Reis J, Rocha L, Lopes M, Duarte D. Flow cytometry analysis of murine bone marrow hematopoietic stem and progenitor cells and stromal niche cells. J Vis Exp. 2022. https://doi.org/10.3791/64248 .
Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci USA. 2009;106:17413–8. (PMID: 198050842762680)
Akeson EC, Davisson MT. Mitotic chromosome preparations from mouse cells for karyotyping. Curr Protoc Hum Genet. 2001. https://doi.org/10.1002/0471142905.hg0410s25 .
The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. (PMID: 3439153)
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. (PMID: 12045153186604)
McLaren CE, Barton JC, Gordeuk VR, Wu L, Adams PC, Reboussin DM, et al. Determinants and characteristics of mean corpuscular volume and hemoglobin concentration in white HFE C282Y homozygotes in the hemochromatosis and iron overload screening study. Am J Hematol. 2007;82:898–905. (PMID: 17597476)
Lee JM, Chan K, Kan YW, Johnson JA. Targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia. Proc Natl Acad Sci USA. 2004;101:9751–6. (PMID: 15210949470746)
López-Revuelta A, Sánchez-Gallego JI, García-Montero AC, Hernández-Hernández A, Sánchez-Yagüe J, Llanillo M. Membrane cholesterol in the regulation of aminophospholipid asymmetry and phagocytosis in oxidized erythrocytes. Free Radic Biol Med. 2007;42:1106–18. (PMID: 17349937)
Shapiro S, Gershon H, Rosenbaum H, Merchav S. Characterization of circulating erythrocytes from myelodysplastic patients treated with recombinant human erythropoietin. Leukemia. 1993;7:1328–33. (PMID: 8371583)
Manabe M, Tanizawa N, Nanno S, Hagiwara Y, Asada R, Koh KR. Erythrophagocytosis in a patient with myelodysplastic syndrome with excess blasts-1 with isolated del(6q). Br J Haematol. 2022;196:803. (PMID: 34668196)
Ramos P, Guy E, Chen N, Proenca CC, Gardenghi S, Casu C, et al. Enhanced erythropoiesis in Hfe-KO mice indicates a role for Hfe in the modulation of erythroid iron homeostasis. Blood. 2011;117:1379–89. (PMID: 210598973056475)
Altamura S, Marques O, Colucci S, Mertens C, Alikhanyan K, Muckenthaler MU. Regulation of iron homeostasis: Lessons from mouse models. Mol Asp Med. 2020;75:100872.
Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J. 2007;21:2237–46. (PMID: 17384144)
Schwessinger R, Suciu MC, McGowan SJ, Telenius J, Taylor S, Higgs DR, et al. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints. Genome Res. 2017;27:1730–42. (PMID: 289040155630036)
Morales-Marin ME, Cordova EJ, Centeno F, Martínez-Hernández A, Méndez-García A, Molina B, et al. NFE2L2 gene variants and arsenic susceptibility: a lymphoblastoid model. J Toxicol Environ Health A 2015;78:628–34. (PMID: 26039680)
Ensembl. 1000 Genomes Project Phase 3 allele frequencies. https://oct2022.archive.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=2:177264845-177265845;v=rs35652124;vdb=variation;vf=189013378 . Accessed February 2023.
Chung YJ, Robert C, Gough SM, Rassool FV, Aplan PD. Oxidative stress leads to increased mutation frequency in a murine model of myelodysplastic syndrome. Leuk Res. 2014;38:95–102. (PMID: 23958061)
Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100:418–30. (PMID: 258280884380714)
Golshayan AR, Jin T, Maciejewski J, Fu AZ, Bershadsky B, Kattan MW, et al. Efficacy of growth factors compared to other therapies for low-risk myelodysplastic syndromes. Br J Haematol. 2007;137:125–32. (PMID: 17391492)
Platzbecker U, Symeonidis A, Oliva EN, Goede JS, Delforge M, Mayer J, et al. A phase 3 randomized placebo-controlled trial of darbepoetin alfa in patients with anemia and lower-risk myelodysplastic syndromes. Leukemia. 2017;31:1944–50. (PMID: 286262205596208)
Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382:140–51. (PMID: 31914241)
Platzbecker U, Della Porta MG, Santini V, Zeidan AM, Komrokji RS, Shortt J, et al. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial. Lancet. 2023;402:373–85. (PMID: 37311468)
Suragani RN, Cawley SM, Li R, Wallner S, Alexander MJ, Mulivor AW, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood. 2014;123:3864–72. (PMID: 247953454064330)
da Silva-Coelho P, Kroeze LI, Yoshida K, Koorenhof-Scheele TN, Knops R, van de Locht LT, et al. Clonal evolution in myelodysplastic syndromes. Nat Commun. 2017;8:15099. (PMID: 284297245530598)
Garcia-Manero G, Tambaro FP, Bekele NB, Yang H, Ravandi F, Jabbour E, et al. Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol. 2012;30:2204–10. (PMID: 225856964879705)
Lin P, Ren Y, Yan X, Luo Y, Zhang H, Kesarwani M, et al. The high NRF2 expression confers chemotherapy resistance partly through up-regulated DUSP1 in myelodysplastic syndromes. Haematologica. 2019;104:485–96. (PMID: 302625696395322)
Jiang Y, Southam AD, Trova S, Beke F, Alhazmi B, Francis T, et al. Valproic acid disables the Nrf2 anti-oxidant response in acute myeloid leukaemia cells enhancing reactive oxygen species-mediated killing. Br J Cancer. 2022;126:275–86. (PMID: 34686779)
Wang L, Zhang Q, Ye L, Ye X, Yang W, Zhang H, et al. All-trans retinoic acid enhances the cytotoxic effect of decitabine on myelodysplastic syndromes and acute myeloid leukaemia by activating the RARα-Nrf2 complex. Br J Cancer. 2023;128:691–701. (PMID: 36482192)
Schneeweiss-Gleixner M, Greiner G, Herndlhofer S, Schellnegger J, Krauth MT, Gleixner KV, et al. Impact of HFE gene variants on iron overload, overall survival and leukemia-free survival in myelodysplastic syndromes. Am J Cancer Res. 2021;11:955–67. (PMID: 337911667994158)
معلومات مُعتمدة: MC_UU_00008/10 United Kingdom MRC_ Medical Research Council; MC_UU_00036/4 United Kingdom MRC_ Medical Research Council
المشرفين على المادة: 0 (NF-E2-Related Factor 2)
0 (Nfe2l2 protein, mouse)
تواريخ الأحداث: Date Created: 20231019 Date Completed: 20240112 Latest Revision: 20240627
رمز التحديث: 20240628
DOI: 10.1038/s41375-023-02067-9
PMID: 37857886
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-5551
DOI:10.1038/s41375-023-02067-9