دورية أكاديمية

A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices.

التفاصيل البيبلوغرافية
العنوان: A composite electrodynamic mechanism to reconcile spatiotemporally resolved exciton transport in quantum dot superlattices.
المؤلفون: Yuan R; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA., Roberts TD; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA., Brinn RM; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA., Choi AA; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA., Park HH; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA., Yan C; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA., Ondry JC; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA., Khorasani S; Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA., Masiello DJ; Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA.; Department of Chemistry, University of Washington, Seattle, WA 98195, USA., Xu K; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA.; STROBE, National Science Foundation Science and Technology Center, University of California Berkeley, Berkeley, CA 94720, USA., Alivisatos AP; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA., Ginsberg NS; Department of Chemistry, University of California Berkeley, Berkeley, CA 94720, USA.; STROBE, National Science Foundation Science and Technology Center, University of California Berkeley, Berkeley, CA 94720, USA.; Department of Physics, University of California Berkeley, Berkeley, CA 94720, USA.; Materials Science Division and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.; Kavli Energy NanoSciences Institute at Berkeley, Berkeley, CA 94720, USA.
المصدر: Science advances [Sci Adv] 2023 Oct 20; Vol. 9 (42), pp. eadh2410. Date of Electronic Publication: 2023 Oct 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Association for the Advancement of Science Country of Publication: United States NLM ID: 101653440 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2375-2548 (Electronic) Linking ISSN: 23752548 NLM ISO Abbreviation: Sci Adv Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Association for the Advancement of Science, [2015]-
مستخلص: Quantum dot (QD) solids are promising optoelectronic materials; further advancing their device functionality requires understanding their energy transport mechanisms. The commonly invoked near-field Förster resonance energy transfer (FRET) theory often underestimates the exciton hopping rate in QD solids, yet no consensus exists on the underlying cause. In response, we use time-resolved ultrafast stimulated emission depletion (STED) microscopy, an ultrafast transformation of STED to spatiotemporally resolve exciton diffusion in tellurium-doped cadmium selenide-core/cadmium sulfide-shell QD superlattices. We measure the concomitant time-resolved exciton energy decay due to excitons sampling a heterogeneous energetic landscape within the superlattice. The heterogeneity is quantified by single-particle emission spectroscopy. This powerful multimodal set of observables provides sufficient constraints on a kinetic Monte Carlo simulation of exciton transport to elucidate a composite transport mechanism that includes both near-field FRET and previously neglected far-field emission/reabsorption contributions. Uncovering this mechanism offers a much-needed unified framework in which to characterize transport in QD solids and additional principles for device design.
References: Chem Rev. 2017 Jan 25;117(2):536-711. (PMID: 27359326)
Nat Nanotechnol. 2019 Sep;14(9):844-850. (PMID: 31406361)
ACS Nano. 2021 Feb 23;15(2):2251-2262. (PMID: 33377761)
Chem Soc Rev. 2021 Nov 1;50(21):11870-11965. (PMID: 34494631)
Phys Rev Lett. 1996 Feb 26;76(9):1517-1520. (PMID: 10061743)
ACS Appl Mater Interfaces. 2014 Mar 12;6(5):3111-4. (PMID: 24564670)
Nat Commun. 2015 May 18;6:7127. (PMID: 25980788)
J Am Chem Soc. 2014 Apr 30;136(17):6259-68. (PMID: 24684141)
Nat Commun. 2019 Apr 8;10(1):1586. (PMID: 30962450)
Acc Chem Res. 2018 Mar 20;51(3):697-705. (PMID: 29443498)
Nat Mater. 2003 Jun;2(6):382-5. (PMID: 12764357)
Chem Rev. 2015 Dec 9;115(23):12732-63. (PMID: 26106908)
Annu Rev Phys Chem. 1998;49:371-404. (PMID: 15012432)
Nano Lett. 2022 Jan 12;22(1):389-395. (PMID: 34935383)
ACS Nano. 2017 May 23;11(5):5041-5050. (PMID: 28398717)
Nano Lett. 2007 Oct;7(10):2942-50. (PMID: 17845067)
Chem Rev. 2016 Sep 28;116(18):11220-89. (PMID: 27552640)
Nat Methods. 2015 Oct;12(10):935-8. (PMID: 26280329)
Science. 2019 Mar 15;363(6432):1199-1202. (PMID: 30872520)
ACS Nano. 2016 Jul 26;10(7):7208-15. (PMID: 27387010)
ACS Nano. 2018 Sep 25;12(9):9011-9021. (PMID: 30193059)
Nano Lett. 2014 Jun 11;14(6):3556-62. (PMID: 24807586)
Light Sci Appl. 2021 Jan 1;10(1):2. (PMID: 33386385)
Nat Mater. 2022 May;21(5):533-539. (PMID: 35256791)
Nature. 2010 Jul 22;466(7305):474-7. (PMID: 20651688)
ACS Nano. 2013 Feb 26;7(2):987-93. (PMID: 23297750)
Nano Lett. 2018 May 9;18(5):3259-3270. (PMID: 29652509)
Nano Lett. 2008 Aug;8(8):2384-7. (PMID: 18642954)
Science. 2016 Aug 26;353(6302):. (PMID: 27563099)
Nat Mater. 2017 Nov;16(11):1136-1141. (PMID: 28920937)
تواريخ الأحداث: Date Created: 20231020 Latest Revision: 20231030
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC10588942
DOI: 10.1126/sciadv.adh2410
PMID: 37862422
قاعدة البيانات: MEDLINE
الوصف
تدمد:2375-2548
DOI:10.1126/sciadv.adh2410