دورية أكاديمية

BDNF and Lactate as Modulators of Hippocampal CA3 Network Physiology.

التفاصيل البيبلوغرافية
العنوان: BDNF and Lactate as Modulators of Hippocampal CA3 Network Physiology.
المؤلفون: Griego E; Departamento de Farmacobiología, Cinvestav Sur, Mexico City, Mexico. ernesto.griego@cinvestav.mx.; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA. ernesto.griego@cinvestav.mx.; Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Calzada de los Tenorios No. 235, Col. Granjas Coapa, C.P. 14330, Mexico City, Mexico. ernesto.griego@cinvestav.mx., Galván EJ; Departamento de Farmacobiología, Cinvestav Sur, Mexico City, Mexico.; Centro de Investigaciones sobre el Envejecimiento, Mexico City, Mexico.
المصدر: Cellular and molecular neurobiology [Cell Mol Neurobiol] 2023 Nov; Vol. 43 (8), pp. 4007-4022. Date of Electronic Publication: 2023 Oct 24.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8200709 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-6830 (Electronic) Linking ISSN: 02724340 NLM ISO Abbreviation: Cell Mol Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York : Kluwer Academic/Plenum Publishers
Original Publication: New York : Plenum Press, c1981-
مواضيع طبية MeSH: Brain-Derived Neurotrophic Factor*/metabolism , Mossy Fibers, Hippocampal*/metabolism, Animals ; Lactic Acid/metabolism ; Hippocampus/metabolism ; Pyramidal Cells/metabolism ; Carrier Proteins/metabolism ; CA3 Region, Hippocampal/metabolism ; Mammals/metabolism
مستخلص: Growing evidence supports the notion that brain-derived neurotrophic factor (BDNF) and lactate are potent modulators of mammalian brain function. The modulatory actions of those biomolecules influence a wide range of neuronal responses, from the shaping of neuronal excitability to the induction and expression of structural and synaptic plasticity. The biological actions of BDNF and lactate are mediated by their cognate receptors and specific transporters located in the neuronal membrane. Canonical functions of BDNF occur via the tropomyosin-related kinase B receptor (TrkB), whereas lactate acts via monocarboxylate transporters or the hydroxycarboxylic acid receptor 1 (HCAR1). Both receptors are highly expressed in the central nervous system, and some of their physiological actions are particularly well characterized in the hippocampus, a brain structure involved in the neurophysiology of learning and memory. The multifarious neuronal circuitry between the axons of the dentate gyrus granule cells, mossy fibers (MF), and pyramidal neurons of area CA3 is of great interest given its role in specific mnemonic processes and involvement in a growing number of brain disorders. Whereas the modulation exerted by BDNF via TrkB has been extensively studied, the influence of lactate via HCAR1 on the properties of the MF-CA3 circuit is an emerging field. In this review, we discuss the role of both systems in the modulation of brain physiology, with emphasis on the hippocampal CA3 network. We complement this review with original data that suggest cross-modulation is exerted by these two independent neuromodulatory systems.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Acsády L, Kamondi A, Sík A, Freund T, Buzsáki G (1998) GABAergic cells are the major postsynaptic targets of mossy fibers in the rat hippocampus. J Neurosci 18(9):3386–3403. https://doi.org/10.1523/JNEUROSCI.18-09-03386.1998. (PMID: 10.1523/JNEUROSCI.18-09-03386.199895472466792657)
Ahmed K, Tunaru S, Offermanns S (2009) GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol Sci 30(11):557–562. https://doi.org/10.1016/j.tips.2009.09.001. (PMID: 10.1016/j.tips.2009.09.00119837462)
Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a non-selective cationic current and to induce dendritic spine formation. J Neurosci 27(19):5179–5189. https://doi.org/10.1523/JNEUROSCI.5499-06.2007. (PMID: 10.1523/JNEUROSCI.5499-06.2007174947042806846)
Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim Y-K (2020) The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci 257:118020. https://doi.org/10.1016/j.lfs.2020.118020. (PMID: 10.1016/j.lfs.2020.11802032603820)
Badurek S, Griguoli M, Asif-Malik A, Zonta B, Guo F, Middei S, Lagostena L, Jurado-Parras MT, Gillingwater TH, Gruart A, Delgado-García JM, Cherubini E, Minichiello L (2020) Immature dentate granule cells require Ntrk2/Trkb for the formation of functional hippocampal circuitry. Iscience 23(5):101078. https://doi.org/10.1016/j.isci.2020.101078. (PMID: 10.1016/j.isci.2020.101078323615067200316)
Baj G, D’Alessandro V, Musazzi L, Mallei A, Sartori CR, Sciancalepore M, Tardito D, Langone F, Popoli M, Tongiorgi E (2012) Physical exercise and antidepressants enhance BDNF targeting in hippocampal CA3 dendrites: further evidence of a spatial code for BDNF splice variants. Neuropsychopharmacology 37(7):1600–1611. https://doi.org/10.1038/npp.2012.5. (PMID: 10.1038/npp.2012.5223181963358751)
Baron A, Waldmann R, Lazdunski M (2002) ASIC-like, proton-activated currents in rat hippocampal neurons. J Physiol 539(Pt 2):485–494. https://doi.org/10.1113/jphysiol.2001.014837. (PMID: 10.1113/jphysiol.2001.014837118826802290154)
Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neuroscience 167(3):588–597. https://doi.org/10.1016/j.neuroscience.2010.02.050. (PMID: 10.1016/j.neuroscience.2010.02.05020219647)
Bergersen L, Waerhaug O, Helm J, Thomas M, Laake P, Davies AJ, Wilson MC, Halestrap AP, Ottersen OP (2001) A novel postsynaptic density protein: the monocarboxylate transporter MCT2 is co-localized with delta-glutamate receptors in postsynaptic densities of parallel fiber-Purkinje cell synapses. Exp Brain Res 136(4):523–534. https://doi.org/10.1007/s002210000600. (PMID: 10.1007/s00221000060011291733)
Bernard PB, Macdonald DS, Gill DA, Ryan CL, Tasker RA (2007) Hippocampal mossy fiber sprouting and elevated trkB receptor expression following systemic administration of low dose domoic acid during neonatal development. Hippocampus 17(11):1121–1133. https://doi.org/10.1002/hipo.20342. (PMID: 10.1002/hipo.2034217636548)
Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26. https://doi.org/10.1016/s0896-6273(00)80510-3. (PMID: 10.1016/s0896-6273(00)80510-39697848)
Berthoux C, Nasrallah K, Milner TA, Castillo PE (2023) BDNF induces its own release to mediate presynaptic plasticity. BioRxiv. https://doi.org/10.1101/2021.12.30.474558. (PMID: 10.1101/2021.12.30.474558)
Berzhanskaya J, Urban NN, Barrionuevo G (1998) Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. J Neurophysiol 79(4):2111–2118. https://doi.org/10.1152/jn.1998.79.4.2111. (PMID: 10.1152/jn.1998.79.4.21119535972)
Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39. https://doi.org/10.1038/361031a0. (PMID: 10.1038/361031a08421494)
Blum R, Konnerth A (2005) Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (bethesda) 20:70–78. https://doi.org/10.1152/physiol.00042.2004. (PMID: 10.1152/physiol.00042.200415653842)
Bouzat P, Oddo M (2014) Lactate and the injured brain: friend or foe? Curr Opin Crit Care 20(2):133–140. https://doi.org/10.1097/MCC.0000000000000072. (PMID: 10.1097/MCC.000000000000007224561705)
Bozzo L, Puyal J, Chatton J-Y (2013) Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS ONE 8(8):e71721. https://doi.org/10.1371/journal.pone.0071721. (PMID: 10.1371/journal.pone.0071721239512293741165)
Bramham CR, Worley PF, Moore MJ, Guzowski JF (2008) The immediate early gene arc/arg3.1: regulation, mechanisms, and function. J Neurosci 28(46):11760–11767. https://doi.org/10.1523/JNEUROSCI.3864-08.2008. (PMID: 10.1523/JNEUROSCI.3864-08.2008190050372615463)
Breindl A, Derrick BE, Rodriguez SB, Martinez JL (1994) Opioid receptor-dependent long-term potentiation at the lateral perforant path-CA3 synapse in rat hippocampus. Brain Res Bull 33(1):17–24. https://doi.org/10.1016/0361-9230(94)90045-0. (PMID: 10.1016/0361-9230(94)90045-08275323)
Brundege JM, Dunwiddie TV (1996) Modulation of excitatory synaptic transmission by adenosine released from single hippocampal pyramidal neurons. J Neurosci 16(18):5603–5612. https://doi.org/10.1523/JNEUROSCI.16-18-05603.1996. (PMID: 10.1523/JNEUROSCI.16-18-05603.199687956166578976)
Bueschke N, Amaral-Silva L, Hu M, Santin JM (2021) Lactate ions induce synaptic plasticity to enhance output from the central respiratory network. J Physiol 599(24):5485–5504. https://doi.org/10.1113/JP282062. (PMID: 10.1113/JP28206234761806)
Cakir Z, Yildirim C, Buran I, Önalan EE, Bal R (2019) Acid-sensing ion channels (ASICs) influence excitability of stellate neurons in the mouse cochlear nucleus. J Comp Physiol A 205(5):769–781. https://doi.org/10.1007/s00359-019-01365-x. (PMID: 10.1007/s00359-019-01365-x)
Calixto E, Thiels E, Klann E, Barrionuevo G (2003) Early maintenance of hippocampal mossy fiber–long-term potentiation depends on protein and RNA synthesis and presynaptic granule cell integrity. J Neurosci 23(12):4842–4849. https://doi.org/10.1523/JNEUROSCI.23-12-04842.2003. (PMID: 10.1523/JNEUROSCI.23-12-04842.2003128325066741163)
Carta M, Opazo P, Veran J, Athané A, Choquet D, Coussen F, Mulle C (2013) CaMKII-dependent phosphorylation of GluK5 mediates plasticity of kainate receptors. EMBO J 32(4):496–510. https://doi.org/10.1038/emboj.2012.334. (PMID: 10.1038/emboj.2012.334232880403579137)
Cauli B, Dusart I, Li D (2023) Lactate as a determinant of neuronal excitability, neuroenergetics and beyond. Neurobiol Dis 184:106207. https://doi.org/10.1016/j.nbd.2023.106207. (PMID: 10.1016/j.nbd.2023.10620737331530)
Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17(7):2295–2313. https://doi.org/10.1523/JNEUROSCI.17-07-02295.1997. (PMID: 10.1523/JNEUROSCI.17-07-02295.199790654916573520)
Danzer SC, McNamara JO (2004) Localization of brain-derived neurotrophic factor to distinct terminals of mossy fiber axons implies regulation of both excitation and feedforward inhibition of CA3 pyramidal cells. J Neurosci 24(50):11346–11355. https://doi.org/10.1523/JNEUROSCI.3846-04.2004. (PMID: 10.1523/JNEUROSCI.3846-04.2004156019411351361)
de Castro Abrantes H, Briquet M, Schmuziger C, Restivo L, Puyal J, Rosenberg N, Rocher A-B, Offermanns S, Chatton J-Y (2019) The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits. J Neurosci 39(23):4422–4433. https://doi.org/10.1523/JNEUROSCI.2092-18.2019. (PMID: 10.1523/JNEUROSCI.2092-18.2019309267496554634)
De Vincenti AP, Ríos AS, Paratcha G, Ledda F (2019) Mechanisms that modulate and diversify BDNF functions: implications for hippocampal synaptic plasticity. Front Cell Neurosci 13:135. https://doi.org/10.3389/fncel.2019.00135. (PMID: 10.3389/fncel.2019.00135310242626465932)
Debanne D, Russier M (2019) The contribution of ion channels in input-output plasticity. Neurobiol Learn Mem 166:107095. https://doi.org/10.1016/j.nlm.2019.107095. (PMID: 10.1016/j.nlm.2019.10709531539624)
Desai NS, Rutherford LC, Turrigiano GG (1999) BDNF regulates the intrinsic excitability of cortical neurons. Learn Mem (cold Spring Harbor, N.y.) 6(3):284–291. https://doi.org/10.1101/lm.6.3.284. (PMID: 10.1101/lm.6.3.284)
Di Castro MA, Volterra A (2022) Astrocyte control of the entorhinal cortex-dentate gyrus circuit: relevance to cognitive processing and impairment in pathology. Glia 70(8):1536–1553. https://doi.org/10.1002/glia.24128. (PMID: 10.1002/glia.2412834904753)
Dieguez D, Barea-Rodriguez EJ (2004) Aging impairs the late phase of long-term potentiation at the medial perforant path-CA3 synapse in awake rats. Synapse (new York, N.y.) 52(1):53–61. https://doi.org/10.1002/syn.20004. (PMID: 10.1002/syn.2000414755632)
Dolci C, Montaruli A, Roveda E, Barajon I, Vizzotto L, Grassi Zucconi G, Carandente F (2003) Circadian variations in expression of the trkB receptor in adult rat hippocampus. Brain Res 994(1):67–72. https://doi.org/10.1016/j.brainres.2003.09.018. (PMID: 10.1016/j.brainres.2003.09.01814642449)
El Hayek L, Khalifeh M, Zibara V, Abi Assaad R, Emmanuel N, Karnib N, El-Ghandour R, Nasrallah P, Bilen M, Ibrahim P, Younes J, Abou Haidar E, Barmo N, Jabre V, Stephan JS, Sleiman SF (2019) Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J Neurosci 39(13):2369–2382. https://doi.org/10.1523/JNEUROSCI.1661-18.2019. (PMID: 10.1523/JNEUROSCI.1661-18.201930692222)
Evstratova A, Tóth K (2014) Information processing and synaptic plasticity at hippocampal mossy fiber terminals. Front Cell Neurosci 8:28. https://doi.org/10.3389/fncel.2014.00028. (PMID: 10.3389/fncel.2014.0002824550783)
Fernández-García S, Sancho-Balsells A, Longueville S, Hervé D, Gruart A, Delgado-García JM, Alberch J, Giralt A (2020) Astrocytic BDNF and TrkB regulate severity and neuronal activity in mouse models of temporal lobe epilepsy. Cell Death Dis 11(6):411. https://doi.org/10.1038/s41419-020-2615-9. (PMID: 10.1038/s41419-020-2615-932483154)
Ferris LT, Williams JS, Shen C-L (2007) The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39(4):728–734. https://doi.org/10.1249/mss.0b013e31802f04c7. (PMID: 10.1249/mss.0b013e31802f04c717414812)
Friedman WJ, Greene LA (1999) Neurotrophin signaling via Trks and p75. Exp Cell Res 253(1):131–142. https://doi.org/10.1006/excr.1999.4705. (PMID: 10.1006/excr.1999.470510579918)
Galván EJ, Cosgrove KE, Barrionuevo G (2011) Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons. Neuropharmacology 60(5):740–747. https://doi.org/10.1016/j.neuropharm.2010.11.008. (PMID: 10.1016/j.neuropharm.2010.11.00821093459)
Galván EJ, Pérez-Rosello T, Gómez-Lira G, Lara E, Gutiérrez R, Barrionuevo G (2015) Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons. Neuroscience 290:332–345. https://doi.org/10.1016/j.neuroscience.2015.01.024. (PMID: 10.1016/j.neuroscience.2015.01.02425637803)
Gilbert PE, Brushfield AM (2009) The role of the CA3 hippocampal subregion in spatial memory: a process oriented behavioral assessment. Prog Neuropsychopharmacol Biol Psychiatry 33(5):774–781. https://doi.org/10.1016/j.pnpbp.2009.03.037. (PMID: 10.1016/j.pnpbp.2009.03.037193754772743458)
Gold SM, Schulz K-H, Hartmann S, Mladek M, Lang UE, Hellweg R, Reer R, Braumann K-M, Heesen C (2003) Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol 138(1–2):99–105. https://doi.org/10.1016/s0165-5728(03)00121-8. (PMID: 10.1016/s0165-5728(03)00121-812742659)
Gómez-Lira G, Lamas M, Romo-Parra H, Gutiérrez R (2005) Programmed and induced phenotype of the hippocampal granule cells. J Neurosci 25(30):6939–6946. https://doi.org/10.1523/JNEUROSCI.1674-05.2005. (PMID: 10.1523/JNEUROSCI.1674-05.2005160491696724843)
Goodwin ML, Harris JE, Hernández A, Gladden LB (2007) Blood lactate measurements and analysis during exercise: a guide for clinicians. J Diabetes Sci Technol 1(4):558–569. https://doi.org/10.1177/193229680700100414. (PMID: 10.1177/193229680700100414198851192769631)
Gooney M, Lynch MA (2001) Long-term potentiation in the dentate gyrus of the rat hippocampus is accompanied by brain-derived neurotrophic factor-induced activation of TrkB. J Neurochem 77(5):1198–1207. https://doi.org/10.1046/j.1471-4159.2001.00334.x. (PMID: 10.1046/j.1471-4159.2001.00334.x11389170)
Graves AR, Moore SJ, Spruston N, Tryba AK, Kaczorowski CC (2016) Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons. J Neurophysiol 116(2):466–471. https://doi.org/10.1152/jn.00186.2016. (PMID: 10.1152/jn.00186.201627146982)
Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 29(41):12764–12767. https://doi.org/10.1523/JNEUROSCI.3566-09.2009. (PMID: 10.1523/JNEUROSCI.3566-09.200919828787)
Griego E, Galván EJ (2021) Metabotropic glutamate receptors at the aged mossy fiber—CA3 synapse of the hippocampus. Neuroscience 456:95–105. https://doi.org/10.1016/j.neuroscience.2019.12.016. (PMID: 10.1016/j.neuroscience.2019.12.01631917351)
Griego E, Herrera-López G, Gómez-Lira G, Barrionuevo G, Gutiérrez R, Galván EJ (2021) Functional expression of TrkB receptors on interneurones and pyramidal cells of area CA3 of the rat hippocampus. Neuropharmacology 182:108379. https://doi.org/10.1016/j.neuropharm.2020.108379. (PMID: 10.1016/j.neuropharm.2020.10837933130041)
Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E, Laviv T, Hempstead BL, Yasuda R, McNamara JO (2016) Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538(7623):99–103. https://doi.org/10.1038/nature19766. (PMID: 10.1038/nature19766276806985398094)
Hashimotodani Y, Nasrallah K, Jensen KR, Chávez AE, Carrera D, Castillo PE (2017) LTP at hilar mossy cell-dentate granule cell synapses modulates dentate gyrus output by increasing excitation/inhibition balance. Neuron 95(4):928-943.e3. https://doi.org/10.1016/j.neuron.2017.07.028. (PMID: 10.1016/j.neuron.2017.07.028288178055609819)
Henze DA, Urban NN, Barrionuevo G (2000) The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98(3):407–427. https://doi.org/10.1016/s0306-4522(00)00146-9. (PMID: 10.1016/s0306-4522(00)00146-910869836)
Herrera-López G, Galván EJ (2018) Modulation of hippocampal excitability via the hydroxycarboxylic acid receptor 1. Hippocampus 28(8):557–567. https://doi.org/10.1002/hipo.22958. (PMID: 10.1002/hipo.2295829704292)
Herrera-López G, Griego E, Galván EJ (2020) Lactate induces synapse-specific potentiation on CA3 pyramidal cells of rat hippocampus. PLoS ONE 15(11):e0242309. https://doi.org/10.1371/journal.pone.0242309. (PMID: 10.1371/journal.pone.0242309331808367660554)
Hoffman DA, Magee JC, Colbert CM, Johnston D (1997) K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387(6636):869–875. https://doi.org/10.1038/43119. (PMID: 10.1038/431199202119)
Holm MM, Nieto-Gonzalez JL, Vardya I, Vaegter CB, Nykjaer A, Jensen K (2009) Mature BDNF, but not proBDNF, reduces excitability of fast-spiking interneurons in mouse dentate gyrus. J Neurosci 29(40):12412–12418. https://doi.org/10.1523/JNEUROSCI.2978-09.2009. (PMID: 10.1523/JNEUROSCI.2978-09.2009198123176665103)
Hsu P-K, Xu B, Mukai J, Karayiorgou M, Gogos JA (2015) The BDNF Val66Met variant affects gene expression through miR-146b. Neurobiol Dis 77:228–237. https://doi.org/10.1016/j.nbd.2015.03.004. (PMID: 10.1016/j.nbd.2015.03.004257711675579022)
Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736. https://doi.org/10.1146/annurev.neuro.24.1.677. (PMID: 10.1146/annurev.neuro.24.1.677115209162758233)
Huang YZ, Pan E, Xiong Z-Q, McNamara JO (2008) Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron 57(4):546–558. https://doi.org/10.1016/j.neuron.2007.11.026. (PMID: 10.1016/j.neuron.2007.11.02618304484)
Hwang D, Kim J, Kyun S, Jang I, Kim T, Park H-Y, Lim K (2023) Exogenous lactate augments exercise-induced improvement in memory but not in hippocampal neurogenesis. Sci Rep 13(1):5838. https://doi.org/10.1038/s41598-023-33017-1. (PMID: 10.1038/s41598-023-33017-13703789010086059)
Immke DC, McCleskey EW (2001) Lactate enhances the acid-sensing Na + channel on ischemia-sensing neurons. Nat Neurosci 4(9):869–870. https://doi.org/10.1038/nn0901-869. (PMID: 10.1038/nn0901-86911528414)
Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295(4):580–623. https://doi.org/10.1002/cne.902950407. (PMID: 10.1002/cne.9029504072358523)
Ito I, Futai K, Katagiri H, Watanabe M, Sakimura K, Mishina M, Sugiyama H (1997) Synapse-selective impairment of NMDA receptor functions in mice lacking NMDA receptor epsilon 1 or epsilon 2 subunit. J Physiol 500(Pt 2):401–408. https://doi.org/10.1113/jphysiol.1997.sp0220308. (PMID: 10.1113/jphysiol.1997.sp022030891473271159393)
Izumi Y, Katsuki H, Zorumski CF (1997) Monocarboxylates (pyruvate and lactate) as alternative energy substrates for the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett 232(1):17–20. https://doi.org/10.1016/s0304-3940(97)00567-3. (PMID: 10.1016/s0304-3940(97)00567-39292881)
Jorwal P, Sikdar SK (2019) Lactate reduces epileptiform activity through HCA1 and GIRK channel activation in rat subicular neurons in an in vitro model. Epilepsia 60(12):2370–2385. https://doi.org/10.1111/epi.16389. (PMID: 10.1111/epi.1638931755997)
Juárez-Muñoz Y, Rivera-Olvera A, Ramos-Languren LE, Escobar ML (2017) CaMKII requirement for the persistence of in vivo hippocampal mossy fiber synaptic plasticity and structural reorganization. Neurobiol Learn Mem 139:56–62. https://doi.org/10.1016/j.nlm.2016.12.015. (PMID: 10.1016/j.nlm.2016.12.01528039086)
Kafitz KW, Rose CR, Thoenen H, Konnerth A (1999) Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401(6756):918–921. https://doi.org/10.1038/44847. (PMID: 10.1038/4484710553907)
Kesner RP (2013) A process analysis of the CA3 subregion of the hippocampus. Front Cell Neurosci 7:78. https://doi.org/10.3389/fncel.2013.00078. (PMID: 10.3389/fncel.2013.00078237501263664330)
Kesner RP, Rolls ET (2015) A computational theory of hippocampal function, and tests of the theory: new developments. Neurosci Biobehav Rev 48:92–147. https://doi.org/10.1016/j.neubiorev.2014.11.009. (PMID: 10.1016/j.neubiorev.2014.11.00925446947)
Koponen E, Lakso M, Castrén E (2004) Overexpression of the full-length neurotrophin receptor trkB regulates the expression of plasticity-related genes in mouse brain. Brain Res Mol Brain Res 130(1–2):81–94. https://doi.org/10.1016/j.molbrainres.2004.07.010. (PMID: 10.1016/j.molbrainres.2004.07.01015519679)
Korte M, Carroll P, Wolf E, Brem G, Thoenen H, Bonhoeffer T (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92(19):8856–8860. https://doi.org/10.1073/pnas.92.19.8856. (PMID: 10.1073/pnas.92.19.8856756803141066)
Kosub KA, Do VH, Derrick BE (2005) NMDA receptor antagonists block heterosynaptic long-term depression (LTD) but not long-term potentiation (LTP) in the CA3 region following lateral perforant path stimulation. Neurosci Lett 374(1):29–34. https://doi.org/10.1016/j.neulet.2004.10.028. (PMID: 10.1016/j.neulet.2004.10.02815631891)
Laezza F, Doherty JJ, Dingledine R (1999) Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science (new York, N.y.) 285(5432):1411–1414. https://doi.org/10.1126/science.285.5432.1411. (PMID: 10.1126/science.285.5432.141110464102)
Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J, Gjedde A, Bergersen LH (2014) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex (new York, N.y.: 1991) 24(10):2784–2795. https://doi.org/10.1093/cercor/bht136. (PMID: 10.1093/cercor/bht136)
Lawrence JJ, McBain CJ (2003) Interneuron diversity series: containing the detonation–feedforward inhibition in the CA3 hippocampus. Trends Neurosci 26(11):631–640. https://doi.org/10.1016/j.tins.2003.09.007. (PMID: 10.1016/j.tins.2003.09.00714585604)
Le Duigou C, Simonnet J, Teleñczuk MT, Fricker D, Miles R (2014) Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network. Front Cell Neurosci 7:262. https://doi.org/10.3389/fncel.2013.00262. (PMID: 10.3389/fncel.2013.00262244091183884140)
Leal G, Afonso PM, Salazar IL, Duarte CB (2015) Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 1621:82–101. https://doi.org/10.1016/j.brainres.2014.10.019. (PMID: 10.1016/j.brainres.2014.10.01925451089)
Li Y, Calfa G, Inoue T, Amaral MD, Pozzo-Miller L (2010) Activity-dependent release of endogenous BDNF from mossy fibers evokes a TRPC3 current and Ca 2+ elevations in CA3 pyramidal neurons. J Neurophysiol 103(5):2846–2856. https://doi.org/10.1152/jn.01140.2009. (PMID: 10.1152/jn.01140.2009202200702867575)
Li W, Calfa G, Larimore J, Pozzo-Miller L (2012) Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice. Proc Natl Acad Sci USA 109(42):17087–17092. https://doi.org/10.1073/pnas.1205271109. (PMID: 10.1073/pnas.1205271109230279593479462)
Lituma PJ, Kwon H-B, Alviña K, Luján R, Castillo PE (2021) Presynaptic NMDA receptors facilitate short-term plasticity and BDNF release at hippocampal mossy fiber synapses. Elife. https://doi.org/10.7554/eLife.66612. (PMID: 10.7554/eLife.66612340610258186907)
Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19(4):235–249. https://doi.org/10.1038/nrn.2018.19. (PMID: 10.1038/nrn.2018.1929515192)
Margineanu MB, Mahmood H, Fiumelli H, Magistretti PJ (2018) L-lactate regulates the expression of synaptic plasticity and neuroprotection genes in cortical neurons: a transcriptome analysis. Front Mol Neurosci 11:375. https://doi.org/10.3389/fnmol.2018.00375. (PMID: 10.3389/fnmol.2018.00375303641736191511)
Márquez LA, Griego E, López Rubalcava C, Galván EJ (2023) NMDA receptor activity during postnatal development determines intrinsic excitability and mossy fiber long-term potentiation of CA3 pyramidal cells. Hippocampus. https://doi.org/10.1002/hipo.23524. (PMID: 10.1002/hipo.2352436938755)
Martínez-Moreno A, Rivera-Olvera A, Escobar ML (2020) BDNF induces in vivo long-lasting enhancement of synaptic transmission and structural reorganization at the hippocampal mossy fibers in a transcription and translation-independent manner. Neurobiol Learn Mem 167:107125. https://doi.org/10.1016/j.nlm.2019.107125. (PMID: 10.1016/j.nlm.2019.10712531770584)
McMahon DBT, Barrionuevo G (2002) Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. J Neurophysiol 88(1):528–533. https://doi.org/10.1152/jn.2002.88.1.528. (PMID: 10.1152/jn.2002.88.1.52812091576)
Minatohara K, Akiyoshi M, Okuno H (2015) Role of immediate-early genes in synaptic plasticity and neuronal ensembles underlying the memory trace. Front Mol Neurosci 8:78. https://doi.org/10.3389/fnmol.2015.00078. (PMID: 10.3389/fnmol.2015.0007826778955)
Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10(12):850–860. https://doi.org/10.1038/nrn2738. (PMID: 10.1038/nrn273819927149)
Minichiello L, Korte M, Wolfer D, Kühn R, Unsicker K, Cestari V, Rossi-Arnaud C, Lipp HP, Bonhoeffer T, Klein R (1999) Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24(2):401–414. https://doi.org/10.1016/s0896-6273(00)80853-3. (PMID: 10.1016/s0896-6273(00)80853-310571233)
Monday HR, Kharod SC, Yoon YJ, Singer RH, Castillo PE (2022) Presynaptic FMRP and local protein synthesis support structural and functional plasticity of glutamatergic axon terminals. Neuron 110(16):2588-2606.e6. https://doi.org/10.1016/j.neuron.2022.05.024. (PMID: 10.1016/j.neuron.2022.05.024357285969391299)
Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, Attramadal H, Storm-Mathisen J, Bergersen LH (2015) The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain. J Neurosci Res 93(7):1045–1055. https://doi.org/10.1002/jnr.23593. (PMID: 10.1002/jnr.2359325881750)
Mowla SJ, Farhadi HF, Pareek S, Atwal JK, Morris SJ, Seidah NG, Murphy RA (2001) Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. J Biol Chem 276(16):12660–12666. https://doi.org/10.1074/jbc.M008104200. (PMID: 10.1074/jbc.M00810420011152678)
Müller W, Connor JA (1991) Dendritic spines as individual neuronal compartments for synaptic Ca 2+ responses. Nature 354(6348):73–76. https://doi.org/10.1038/354073a0. (PMID: 10.1038/354073a01682815)
Müller P, Duderstadt Y, Lessmann V, Müller NG (2020) Lactate and BDNF: key mediators of exercise induced neuroplasticity? J Clin Med. https://doi.org/10.3390/jcm9041136. (PMID: 10.3390/jcm9041136333225597764649)
Nakahara S, Miyake S, Tajinda K, Ito H (2015) Mossy fiber mis-pathfinding and semaphorin reduction in the hippocampus of α-CaMKII hKO mice. Neurosci Lett 598:47–51. https://doi.org/10.1016/j.neulet.2015.05.012. (PMID: 10.1016/j.neulet.2015.05.01225979366)
Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF, Sun LD, Kato A, Carr CA, Johnston D, Wilson MA, Tonegawa S (2002) Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science (new York, N.y.) 297(5579):211–218. https://doi.org/10.1126/science.1071795. (PMID: 10.1126/science.107179512040087)
Nasrallah K, Berthoux C, Hashimotodani Y, Chávez AE, Gulfo M, Luján R, Castillo PE (2021) Retrograde adenosine/A2A receptor signaling mediates presynaptic hippocampal LTP and facilitates epileptic seizures. BioRxiv. https://doi.org/10.1101/2021.10.07.463512. (PMID: 10.1101/2021.10.07.463512)
Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6(11):863–876. https://doi.org/10.1038/nrn1786. (PMID: 10.1038/nrn178616261180)
Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP (2011) International Union of Basic and Clinical Pharmacology. LXXXII: nomenclature and classification of hydroxy-carboxylic acid receptors (GPR81, GPR109A, and GPR109B). Pharmacol Rev 63(2):269–290. https://doi.org/10.1124/pr.110.003301. (PMID: 10.1124/pr.110.00330121454438)
Ortiz JB, Anglin JM, Daas EJ, Paode PR, Nishimura K, Conrad CD (2018) BDNF and TrkB mediate the improvement from chronic stress-induced spatial memory deficits and CA3 dendritic retraction. Neuroscience 388:330–346. https://doi.org/10.1016/j.neuroscience.2018.07.049. (PMID: 10.1016/j.neuroscience.2018.07.04930076998)
Pan E, Zhao Z, McNamara JO (2019) LTD at mossy fiber synapses onto stratum lucidum interneurons requires TrkB and retrograde endocannabinoid signaling. J Neurophysiol 121(2):609–619. https://doi.org/10.1152/jn.00669.2018. (PMID: 10.1152/jn.00669.201830517040)
Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2(1):24–32. https://doi.org/10.1038/35049004. (PMID: 10.1038/3504900411253356)
Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I (2016) Lactate as a metabolite and a regulator in the central nervous system. Int J Mol Sci. https://doi.org/10.3390/ijms17091450. (PMID: 10.3390/ijms17091450275981365037729)
Ramamoorthi K, Fropf R, Belfort GM, Fitzmaurice HL, McKinney RM, Neve RL, Otto T, Lin Y (2011) Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science (new York, N.y.) 334(6063):1669–1675. https://doi.org/10.1126/science.1208049. (PMID: 10.1126/science.120804922194569)
Rebola N, Carta M, Mulle C (2017) Operation and plasticity of hippocampal CA3 circuits: implications for memory encoding. Nat Rev Neurosci 18(4):208–220. https://doi.org/10.1038/nrn.2017.10. (PMID: 10.1038/nrn.2017.1028251990)
Romo-Araiza A, Picazo-Aguilar RI, Griego E, Márquez LA, Galván EJ, Cruz Y, Fernández-Presas AM, Chávez-Guerra A, Rodríguez-Barrera R, Azpiri-Cardós AP, Rosas-Quintero C, Jasso-Chávez R, Borlongan CV, Ibarra A (2023) Symbiotic supplementation (E. faecium and Agave Inulin) improves spatial memory and increases plasticity in the hippocampus of obese rats: a proof-of-concept study. Cell Transplant 32:9636897231177356. https://doi.org/10.1177/09636897231177357. (PMID: 10.1177/09636897231177357)
Rose CR, Blum R, Kafitz KW, Kovalchuk Y, Konnerth A (2004) From modulator to mediator: rapid effects of BDNF on ion channels. BioEssays 26(11):1185–1194. https://doi.org/10.1002/bies.20118. (PMID: 10.1002/bies.2011815499580)
Sakuragi S, Tominaga-Yoshino K, Ogura A (2013) Involvement of TrkB- and p75(NTR)-signaling pathways in two contrasting forms of long-lasting synaptic plasticity. Sci Rep 3:3185. https://doi.org/10.1038/srep03185. (PMID: 10.1038/srep03185242125653822391)
Sasi M, Vignoli B, Canossa M, Blum R (2017) Neurobiology of local and intercellular BDNF signaling. Pflug Arch 469(5–6):593–610. https://doi.org/10.1007/s00424-017-1964-4. (PMID: 10.1007/s00424-017-1964-4)
Scharfman HE, Mercurio TC, Goodman JH, Wilson MA, MacLusky NJ (2003) Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor. J Neurosci 23(37):11641–11652. https://doi.org/10.1523/JNEUROSCI.23-37-11641.2003. (PMID: 10.1523/JNEUROSCI.23-37-11641.2003146848661283101)
Schildt S, Endres T, Lessmann V, Edelmann E (2013) Acute and chronic interference with BDNF/TrkB-signaling impair LTP selectively at mossy fiber synapses in the CA3 region of mouse hippocampus. Neuropharmacology 71:247–254. https://doi.org/10.1016/j.neuropharm.2013.03.041. (PMID: 10.1016/j.neuropharm.2013.03.04123587649)
Schjetnan AG-P, Escobar ML (2012) In vivo BDNF modulation of hippocampal mossy fiber plasticity induced by high frequency stimulation. Hippocampus 22(1):1–8. https://doi.org/10.1002/hipo.20866. (PMID: 10.1002/hipo.2086620848610)
Senzai Y (2019) Function of local circuits in the hippocampal dentate gyrus-CA3 system. Neurosci Res 140:43–52. https://doi.org/10.1016/j.neures.2018.11.003. (PMID: 10.1016/j.neures.2018.11.00330408501)
Sgritta M, Vignoli B, Pimpinella D, Griguoli M, Santi S, Bialowas A, Wiera G, Zacchi P, Malerba F, Marchetti C, Canossa M, Cherubini E (2023) Impaired synaptic plasticity in an animal model of autism exhibiting early hippocampal GABAergic-BDNF/TrkB signaling alterations. Iscience 26(1):105728. https://doi.org/10.1016/j.isci.2022.105728. (PMID: 10.1016/j.isci.2022.10572836582822)
Skaper SD (2018) Neurotrophic factors: an overview. Methods Mol Biol (clifton, N.J.) 1727:1–17. https://doi.org/10.1007/978-1-4939-7571-6_1. (PMID: 10.1007/978-1-4939-7571-6_1)
Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, Ulja D, Karuppagounder SS, Holson EB, Ratan RR, Ninan I, Chao MV (2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife. https://doi.org/10.7554/eLife.15092. (PMID: 10.7554/eLife.15092272530674915811)
Storozhuk M, Cherninskyi A, Maximyuk O, Isaev D, Krishtal O (2021) Acid-sensing ion channels: focus on physiological and some pathological roles in the brain. Curr Neuropharmacol 19(9):1570–1589. https://doi.org/10.2174/1570159X19666210125151824. (PMID: 10.2174/1570159X19666210125151824335509758762183)
Sun X, Lin Y (2016) Npas4: linking neuronal activity to memory. Trends Neurosci 39(4):264–275. https://doi.org/10.1016/j.tins.2016.02.003. (PMID: 10.1016/j.tins.2016.02.003269872584818711)
Takeuchi T, Duszkiewicz AJ, Morris RGM (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B 369(1633):20130288. https://doi.org/10.1098/rstb.2013.0288. (PMID: 10.1098/rstb.2013.0288)
Takimoto M, Hamada T (2014) Acute exercise increases brain region-specific expression of MCT1, MCT2, MCT4, GLUT1, and COX IV proteins. J Appl Physiol (bethesda, Md.: 1985) 116(9):1238–1250. https://doi.org/10.1152/japplphysiol.01288.2013. (PMID: 10.1152/japplphysiol.01288.2013)
Tanaka J-I, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GCR, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science (new York, N.y.) 319(5870):1683–1687. https://doi.org/10.1126/science.1152864. (PMID: 10.1126/science.115286418309046)
Tang F, Lane S, Korsak A, Paton JFR, Gourine AV, Kasparov S, Teschemacher AG (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 5:3284. https://doi.org/10.1038/ncomms4284. (PMID: 10.1038/ncomms428424518663)
Tecuatl C, Herrrera-López G, Martín-Ávila A, Yin B, Weber S, Barrionuevo G, Galván EJ (2018) TrkB-mediated activation of the phosphatidylinositol-3-kinase/Akt cascade reduces the damage inflicted by oxygen-glucose deprivation in area CA3 of the rat hippocampus. Eur J Neurosci 47(9):1096–1109. https://doi.org/10.1111/ejn.13880. (PMID: 10.1111/ejn.13880294809365938095)
Toth K, Suares G, Lawrence JJ, Philips-Tansey E, McBain CJ (2000) Differential mechanisms of transmission at three types of mossy fiber synapse. J Neurosci 20(22):8279–8289. https://doi.org/10.1523/JNEUROSCI.20-22-08279.2000. (PMID: 10.1523/JNEUROSCI.20-22-08279.2000110699346773175)
Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2(2):189–199. https://doi.org/10.1002/hipo.450020209. (PMID: 10.1002/hipo.4500202091308182)
Tucker K, Fadool DA (2002) Neurotrophin modulation of voltage-gated potassium channels in rat through TrkB receptors is time and sensory experience dependent. J Physiol 542(Pt 2):413–429. https://doi.org/10.1113/jphysiol.2002.017376. (PMID: 10.1113/jphysiol.2002.017376121221422290412)
van Hall G, Strømstad M, Rasmussen P, Jans O, Zaar M, Gam C, Quistorff B, Secher NH, Nielsen HB (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29(6):1121–1129. https://doi.org/10.1038/jcbfm.2009.35. (PMID: 10.1038/jcbfm.2009.3519337275)
Voss MW, Soto C, Yoo S, Sodoma M, Vivar C, van Praag H (2019) Exercise and hippocampal memory systems. Trends Cogn Sci 23(4):318–333. https://doi.org/10.1016/j.tics.2019.01.006. (PMID: 10.1016/j.tics.2019.01.006307776416422697)
Weng FJ, Garcia RI, Lutzu S, Alviña K, Zhang Y, Dushko M, Ku T, Zemoura K, Rich D, Garcia-Dominguez D, Hung M, Yelhekar TD, Sørensen AT, Xu W, Chung K, Castillo PE, Lin Y (2018) Npas4 is a critical regulator of learning-induced plasticity at mossy fiber-CA3 synapses during contextual memory formation. Neuron 97(5):1137–1152. https://doi.org/10.1016/j.neuron.2018.01.026. (PMID: 10.1016/j.neuron.2018.01.026294299335843542)
Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91(4):267–270. https://doi.org/10.1254/jphs.91.267. (PMID: 10.1254/jphs.91.26712719654)
Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L, Welcher AA (1997) Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience 78(2):431–448. https://doi.org/10.1016/s0306-4522(96)00613-6. (PMID: 10.1016/s0306-4522(96)00613-69145800)
Yang B, Sakurai T, Takata T, Yokono K (2003) Effects of lactate/pyruvate on synaptic plasticity in the hippocampal dentate gyrus. Neurosci Res 46(3):333–337. https://doi.org/10.1016/s0168-0102(03)00096-8. (PMID: 10.1016/s0168-0102(03)00096-812804794)
Zakharenko SS, Patterson SL, Dragatsis I, Zeitlin SO, Siegelbaum SA, Kandel ER, Morozov A (2003) Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses. Neuron 39(6):975–990. https://doi.org/10.1016/s0896-6273(03)00543-9. (PMID: 10.1016/s0896-6273(03)00543-912971897)
معلومات مُعتمدة: 727269 Consejo Nacional de Ciencia y Tecnología; CB-2016-281617 Consejo Nacional de Ciencia y Tecnología
فهرسة مساهمة: Keywords: BNDF; CA3; HCAR1; Hippocampus; Lactate; TrkB
المشرفين على المادة: 0 (Brain-Derived Neurotrophic Factor)
33X04XA5AT (Lactic Acid)
0 (Carrier Proteins)
تواريخ الأحداث: Date Created: 20231024 Date Completed: 20231122 Latest Revision: 20231211
رمز التحديث: 20231215
DOI: 10.1007/s10571-023-01425-6
PMID: 37874456
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-6830
DOI:10.1007/s10571-023-01425-6