دورية أكاديمية

Reinforcement of Positive Electrode-Electrolyte Interface without Using Electrolyte Additives Through Thermoelectrochemical Oxidation of LiPF 6 for Lithium Secondary Batteries.

التفاصيل البيبلوغرافية
العنوان: Reinforcement of Positive Electrode-Electrolyte Interface without Using Electrolyte Additives Through Thermoelectrochemical Oxidation of LiPF 6 for Lithium Secondary Batteries.
المؤلفون: Leem HJ; Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam, 13509, Republic of Korea.; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea., Kim W; Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam, 13509, Republic of Korea.; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea., Park SS; Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam, 13509, Republic of Korea., Yu J; Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam, 13509, Republic of Korea., Kim YJ; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea., Kim HS; Advanced Batteries Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Seongnam, 13509, Republic of Korea.
المصدر: Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Mar; Vol. 20 (10), pp. e2304814. Date of Electronic Publication: 2023 Oct 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101235338 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1613-6829 (Electronic) Linking ISSN: 16136810 NLM ISO Abbreviation: Small Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH, c2005-
مستخلص: Owing to the limited electrochemical stability window of carbonate electrolytes, the initial formation of a solid electrolyte interphase and surface film on the negative and positive electrode surfaces by the decomposition of the electrolyte component is inevitable for the operation of lithium secondary batteries. The deposited film on the surface of the active material is vital for reducing further electrochemical side reactions at the surface; hence, the manipulation of this formation process is necessary for the appropriate operation of the assembled battery system. In this study, the thermal decomposition of LiPF 6 salt is used as a surface passivation agent, which is autocatalytically formed during high-temperature storage. The thermally formed difluorophosphoric acid is subsequently oxidized on the partially charged high-Ni positive electrode surface, which improves the cycleability of lithium metal cells via phosphorus- and fluorine-based surface film formation. Moreover, the improvement in the high-temperature cycleability is demonstrated by controlling the formation process in the lithium-ion pouch cell with a short period of high-temperature storage before battery usage.
(© 2023 Wiley-VCH GmbH.)
References: a) H. S. Kim, S. Jurng, S. Sim, T. Yoon, J. Mun, J. i. H. Ryu, S. M. Oh, Electrochem. Commun. 2015, 58, 25;.
b) H.-S. Kim, T. H. Kim, S. S. Park, M. S. Kang, G. Jeong, ACS Appl. Mater. Interfaces 2021, 13, 44348;.
c) H.-S. Kim, G. Jeong, H. J. Leem, M. A. Lee, J.-N. Lee, S.-G. Woo, J. Yu, J. Mater. Chem. A 2022, 10, 17659;.
d) H.-S. Kim, T. H. Kim, W. Kim, S. S. Park, G. Jeong, ACS Appl. Mater. Interfaces 2023, 15, 9212;.
e) J. Xiao, F. Shi, T. Glossmann, C. Burnett, Z. Liu, Nat. Energy 2023;.
f) C. D. Quilty, D. Wu, W. Li, D. C. Bock, L. Wang, L. M. Housel, A. Abraham, K. J. Takeuchi, A. C. Marschilok, E. S. Takeuchi, Chem. Rev. 2023, 123, 1327;.
g) J. Liu, M. Yue, S. Wang, Y. Zhao, J. Zhang, Adv. Funct. Mater. 2022, 32, 2107769;.
h) F. Zheng, M. Kotobuki, S. Song, M. O. Lai, L. Lu, J. Power Sources 2018, 389, 198;.
i) L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources 2013, 226, 272.
a) L. Köbbing, A. Latz, B. Horstmann, J. Power Sources 2023, 561, 232651;.
b) H.-s. Kim, J. Kim, S. T. Yoo, J. H. Ryu, S. M. Oh, J. Electrochem. Soc. 2021, 168.
a) K. Xu, Chem. Rev. 2014, 114, 11503;.
b) K. Xu, Chem. Rev. 2004, 104, 4303.
a) P. Guan, L. Liu, X. Lin, J. Electrochem. Soc. 2015, 162, A1798;.
b) N.a Liu, H. Li, Z. Wang, X. Huang, L. Chen, Electrochem. Solid-State Lett. 2006, 9, A328;.
c) K. Edström, M. Herstedt, D. P. Abraham, J. Power Sources 2006, 153, 380;.
d) J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources 2005, 147, 269;.
e) J. S. Gnanaraj, R. W. Thompson, S. N. Iaconatti, J. F. Dicarlo, K. M. Abraham, Electrochem. Solid-State Lett. 2005, 8, A128;.
f) K. Edström, T. Gustafsson, J. O. Thomas, Electrochim. Acta 2004, 50, 397;.
g) P. Arora, R. E. White, M. Doyle, J. Electrochem. Soc. 1998, 145, 3647;.
h) E. Peled, D. Golodnitsky, G. Ardel, J. Electrochem. Soc. 1997, 144, L208;.
i) E. Peled, J. Electrochem. Soc. 1979, 126, 2047.
a) C. Mao, S. J. An, H. M. Meyer, J. Li, M. Wood, R. E. Ruther, D. L. Wood, J. Power Sources 2018, 402, 107;.
b) S. J. An, J. Li, Z. Du, C. Daniel, D. L. Wood, J. Power Sources 2017, 342, 846.
a) H. H. Lee, C. C. Wan, Y. Y. Wang, J. Electrochem. Soc. 2004, 151, A542;.
b) A. M. Andersson, M. Herstedt, A. G. Bishop, K. Edström, Electrochim. Acta 2002, 47, 1885;.
c) J. Kim, J. G. Lee, H. S. Kim, T. J. Lee, H. Park, J. i. H. Ryu, S. M. Oh, J. Electrochem. Soc. 2017, 164, A2418;.
d) J. Kim, H. S. Kim, J. G. Lee, H. Jeong, J. i. H. Ryu, S. M. Oh, J. Electrochem. Soc. 2017, 164, A3699;.
e) H. Park, T. Yoon, Y. Kim, J. G. Lee, J. Kim, H. S. Kim, J. i. H. Ryu, J. J. Kim, S. M. Oh, J. Electrochem. Soc. 2015, 162, A892.
a) S. Wiemers-Meyer, M. Winter, S. Nowak, Phys. Chem. Chem. Phys. 2016, 18, 26595;.
b) C. L. Campion, W. Li, B. L. Lucht, J. Electrochem. Soc. 2005, 152, A2327.
a) B. S. Parimalam, A. D. Macintosh, R. Kadam, B. L. Lucht, J. Phys. Chem. C 2017, 121, 22733;.
b) W. Li, B. L. Lucht, J. Electrochem. Soc. 2006, 153, A1617.
R. Morasch, H. A. Gasteiger, B. Suthar, J. Electrochem. Soc. 2023, 170, 080522.
a) W. Kim, T. H. Kim, J. Yu, Y. J. Kim, K. i. J. Kim, H. S. Kim, Adv. Funct. Mater. 2023, 2306068;.
b) M. A. Lee, H. J. Leem, J. B. Lee, C. Hwang, J.-S. Yu, H.-s. Kim, J. Mater. Chem. A 2023, 11, 21244.
H.-S. Kim, T. H. Kim, W. Kim, S. S. Park, G. Jeong, ACS Appl. Mater. Interfaces 2023, 15, 9212.
a) Y. Kim, H. Park, J. H. Warner, A. Manthiram, ACS Energy Lett. 2021, 6, 941;.
b) Y. Kim, H. Park, A. Dolocan, J. H. Warner, A. Manthiram, ACS Appl. Mater. Interfaces 2021, 13, 27096;.
c) W. M.o Seong, Y. Kim, A. Manthiram, Chem. Mater. 2020, 32, 9479.
Y. M. Kim, H. S. Kim, B. o. K. Park, J. H. Yang, H. J. Leem, J. Yu, S. Kim, S. o. Y. Kim, J. W. Lee, M. S. Park, K. i. J. Kim, Small 2023, 19, e2301754.
معلومات مُعتمدة: Ministry of Trade, Industry & Energy; 20022514 Korea Evaluation Institute of Industrial Technology; 2022M3J1A1085408 National Research Foundation of Korea; RS-2023-00221723 Institute of Information & communications Technology Planning & Evaluation
فهرسة مساهمة: Keywords: electrolytes; formation process; high-Ni positive electrodes; interphases; lithium-ion batteries
تواريخ الأحداث: Date Created: 20231024 Latest Revision: 20240309
رمز التحديث: 20240309
DOI: 10.1002/smll.202304814
PMID: 37875646
قاعدة البيانات: MEDLINE
الوصف
تدمد:1613-6829
DOI:10.1002/smll.202304814