دورية أكاديمية

Surface immobilized α-1 acid glycoprotein and collagen VI modulate mouse macrophage polarization and reduce the foreign body capsule.

التفاصيل البيبلوغرافية
العنوان: Surface immobilized α-1 acid glycoprotein and collagen VI modulate mouse macrophage polarization and reduce the foreign body capsule.
المؤلفون: Chen AC; Department of Bioengineering, University of Washington, Seattle, Washington, USA., Ciridon W; Department of Bioengineering, University of Washington, Seattle, Washington, USA., Creason S; Department of Bioengineering, University of Washington, Seattle, Washington, USA., Ratner BD; Department of Bioengineering, University of Washington, Seattle, Washington, USA.
المصدر: Journal of biomedical materials research. Part A [J Biomed Mater Res A] 2024 Aug; Vol. 112 (8), pp. 1241-1249. Date of Electronic Publication: 2023 Oct 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101234237 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4965 (Electronic) Linking ISSN: 15493296 NLM ISO Abbreviation: J Biomed Mater Res A Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : John Wiley & Sons, c2002-
مواضيع طبية MeSH: Macrophages*/metabolism , Macrophages*/drug effects , Foreign-Body Reaction* , Orosomucoid*/metabolism , Cell Polarity*/drug effects, Animals ; Mice ; Surface Properties ; Immobilized Proteins/pharmacology ; Polyhydroxyethyl Methacrylate/chemistry ; Mice, Inbred C57BL ; Lipopolysaccharides/pharmacology
مستخلص: Macrophages are widely recognized in modulating the foreign body response, and the manner in which they do so largely depends on their activation state, often referred to as their polarization. This preliminary study demonstrates that surface immobilized α-1 acid glycoprotein (AGP), as well as collagen VI (Col6) in conjunction with AGP, can direct macrophages towards the M2 polarization state in vitro and modify the foreign body response in vivo. AGP and Col6 are immobilized onto poly(2-hydroxyethyl methacrylate) (pHEMA) surfaces using carbonyl diimidazole chemistry. Mouse bone marrow derived macrophages are cultured on modified surfaces with or without lipopolysaccharide stimulation. Surface modified pHEMA discs are implanted subcutaneously into mice to observe differences in the foreign body response. After stimulation with lipopolysaccharide, macrophages cultured on AGP or Col6 modified surfaces showed a reduction in TNF-α expression compared to controls. Arg1 expression was also increased in macrophages cultured on modified surfaces. Explanted tissues showed that the foreign body capsule around implants with AGP or AGP and Col6 modification had reduced thickness, while also being more highly vascularized. These data demonstrate that α-1 acid glycoprotein and collagen VI could potentially be used for the surface modification of medical devices to influence macrophage polarization leading to a reduced and modulated foreign body response.
(© 2023 Wiley Periodicals LLC.)
References: Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86‐100. doi:10.1016/j.smim.2007.11.004.
Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol. 2008;2(6):1003‐1015. doi:10.1177/193229680800200610.
Norton LW, Koschwanez HE, Wisniewski NA, Klitzman B, Reichert WM. Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response. J Biomed Mater Res A. 2007;81A(4):858‐869. doi:10.1002/jbm.a.31088.
Hausner RJ, Schoen FJ, Pierson KK. Foreign‐body reaction to silicone gel in axillary lymph nodes after an augmentation mammaplasty. Plast Reconstr Surg. 1978;62(3):381‐384. doi:10.1097/00006534‐197809000‐00007.
Ward WK. A review of the foreign‐body response to subcutaneously‐implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol. 2008;2(5):768‐777.
Xia Z, Triffitt JT. A review on macrophage responses to biomaterials. Biomed Mater. 2006;1(1):R1‐R9.
MacLauchlan S, Skokos EA, Meznarich N, et al. Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9. J Leukoc Biol. 2009;85(4):617‐626. doi:10.1189/jlb.1008588.
Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart‐Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14(11):1835‐1842. doi:10.1089/ten.tea.2007.0264.
Sussman EM, Halpin MC, Muster J, Moon RT, Ratner BD. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann Biomed Eng. 2014;42(7):1508‐1516.
Brown BN, Ratner BD, Goodman SB, Amar S, Badylak SF. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials. 2012;33(15):3792‐3802. doi:10.1016/j.biomaterials.2012.02.034.
Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677‐686. doi:10.1016/j.it.2004.09.015.
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958‐969. doi:10.1038/nri2448.
Hazlett LD, McClellan SA, Barrett RP, et al. IL‐33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis. Investig Opthalmology Vis Sci. 2010;51(3):1524‐1532. doi:10.1167/iovs.09‐3983.
Li K, Xu W, Guo Q, et al. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res. 2009;105(4):353‐364. doi:10.1161/CIRCRESAHA.109.195230.
Fournier T, Medjoubi‐N N, Porquet D. Alpha‐1‐acid glycoprotein. Biochim Biophys Acta BBA Protein Struct Mol Enzymol. 2000;1482(1–2):157‐171. doi:10.1016/S0167‐4838(00)00153‐9.
Komori H, Watanabe H, Shuto T, et al. α1‐acid glycoprotein up‐regulates CD163 via TLR4/CD14 protein pathway. J Biol Chem. 2012;287(36):30688‐30700. doi:10.1074/jbc.M112.353771.
Baldock C, Sherratt MJ, Shuttleworth CA, Kielty CM. The supramolecular Organization of Collagen VI microfibrils. J Mol Biol. 2003;330(2):297‐307. doi:10.1016/S0022‐2836(03)00585‐0.
Chen P, Cescon M, Megighian A, Ronaldo P. Collagen VI regulates peripheral nerve myelination and function. FASEB J. 2014;28(3):1145‐1156. doi:10.1096/fj.13‐239533.
Chen P, Cescon M, Zuccolotto G, et al. Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization. Acta Neuropathol (Berl). 2015;129(1):97‐113.
Luttikhuizen DT, Harmsen MC, Luyn MJAV. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006;12(7):1955‐1970. doi:10.1089/ten.2006.12.1955.
Wolf MT, Dearth CL, Ranallo CA, et al. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials. 2014;35(25):6838‐6849.
Lopez GP, Ratner BD, Rapoza RJ, Horbett TA. Plasma deposition of ultrathin films of poly(2‐hydroxyethyl methacrylate): surface analysis and protein adsorption measurements. Macromolecules. 1993;26(13):3247‐3253. doi:10.1021/ma00065a001.
Ratner BD, Chilkoti A, Lopez GP. Plasma deposition and treatment for biomaterial applications. Plasma Depos Treat Etch Polym. 1990;463‐516.
Löpez GP, Ratner BD, Tidwell CD, Haycox CL, Rapoza RJ, Horbett TA. Glow discharge plasma deposition of tetraethylene glycol dimethyl ether for fouling‐resistant biomaterial surfaces. J Biomed Mater Res. 1992;26(4):415‐439. doi:10.1002/jbm.820260402.
Bethell GS, Ayers JS, Hancock WS, Hearn MT. A novel method of activation of cross‐linked agaroses with 1, 1′‐carbonyldiimidazole which gives a matrix for affinity chromatography devoid of additional charged groups. J Biol Chem. 1979;254(8):2572‐2574.
Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony‐stimulating factor. J Exp Med. 1992;176(6):1693‐1702. doi:10.1084/jem.176.6.1693.
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787‐795.
Herbert DR, Hölscher C, Mohrs M, et al. Alternative macrophage activation is essential for survival during schistosomiasis and downmodulates T helper 1 responses and immunopathology. Immunity. 2004;20(5):623‐635.
Zeyda M, Farmer D, Todoric J, et al. Human adipose tissue macrophages are of an anti‐inflammatory phenotype but capable of excessive pro‐inflammatory mediator production. Int J Obes (Lond). 2007;31(9):1420‐1428.
Skalli O, Pelte MF, Peclet MC, et al. Alpha‐smooth muscle Actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem. 1989;37(3):315‐321.
Hallmann R, Mayer DN, Berg EL, Broermann R, Butcher EC. Novel mouse endothelial cell surface marker is suppressed during differentiation of the blood brain barrier. Dev Dyn. 1995;202(4):325‐332. doi:10.1002/aja.1002020402.
Wallenstein S, Zucker CL, Fleiss JL. Some statistical methods useful in circulation research. Circ Res. 1980;47(1):1‐9.
Potas JR, Haque F, Maclean FL, Nisbet DR. Interleukin‐10 conjugated electrospun polycaprolactone (PCL) nanofibre scaffolds for promoting alternatively activated (M2) macrophages around the peripheral nerve in vivo. J Immunol Methods. 2015;420:38‐49. doi:10.1016/j.jim.2015.03.013.
Kim HS, Kim S, Shin BH, et al. Silicone implants immobilized with Interleukin‐4 promote the M2 polarization of macrophages and inhibit the formation of fibrous capsules. Polymers (Basel). 2021;13(16):1‐16.
Wang Y, Qi H, Miron RJ, Zhang Y. Modulating macrophage polarization on titanium implant surface by poly(dopamine)‐assisted immobilization of IL4. Clin Implant Dent Relat Res. 2019;21(5):977‐986.
Cheng IH, Lin Y‐C, Hwang E, et al. Collagen VI protects against neuronal apoptosis elicited by ultraviolet irradiation via an Akt/phosphatidylinositol 3‐kinase signaling pathway. Neuroscience. 2011;183:178‐188.
Sun Y, Yang Y, Qin Z, et al. The acute‐phase protein orosomucoid regulates food intake and energy homeostasis via leptin receptor signaling pathway. Diabetes. 2016;65(6):1630‐1641.
Zhang L, Cao Z, Bai T, et al. Zwitterionic hydrogels implanted in mice resist the foreign‐body reaction. Nat Biotechnol. 2013;31(6):553‐556.
Rosengren A, Bjursten LM. Pore size in implanted polypropylene filters is critical for tissue organization. J Biomed Mater Res Part off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater. 2003;67(3):918‐926.
Madden LR, Mortisen DJ, Sussman EM, et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci. 2010;107(34):15211‐15216. doi:10.1073/pnas.1006442107.
Vegas AJ, Veiseh O, Doloff JC, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34(3):345‐352.
Vacanti NM, Cheng H, Hill PS, et al. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules. 2012;13(10):3031‐3038.
Brauker JH, Carr‐Brendel VE, Martinson LA, Crudele J, Johnston WD, Johnson RC. Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res. 1995;29(12):1517‐1524. doi:10.1002/jbm.820291208.
Sharkawy AA, Klitzman B, Truskey GA, Reichert WM. Engineering the tissue which encapsulates subcutaneous implants. II. Plasma–tissue exchange properties. J Biomed Mater Res off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater. 1998;40(4):586‐597.
Elcin YM, Dixit V, Gitnick G. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artif Organs. 2001;25(7):558‐565. doi:10.1046/j.1525‐1594.2001.025007558.x.
Hetrick EM, Prichard HL, Klitzman B, Schoenfisch MH. Reduced foreign body response at nitric oxide‐releasing subcutaneous implants. Biomaterials. 2007;28(31):4571‐4580. doi:10.1016/j.biomaterials.2007.06.036.
Imai Y, Masuhara E. Long‐term in vivo studies of poly(2‐hydroxyethyl methacrylate). JBMR. 1982;16:609‐617.
Hermanson G. Bioconjugate Techniques. Academic press; 2013.
Beckstead BL, Tung JC, Liang KJ, et al. Methods to promote notch signaling at the biomaterial interface and evaluation in a rafted organ culture model. J Biomed Mater Res A. 2009;91A(2):436‐446. doi:10.1002/jbm.a.32214.
Martin SM, Schwartz JL, Giachelli CM, Ratner BD. Enhancing the biological activity of immobilized osteopontin using a type‐1 collagen affinity coating. J Biomed Mater Res. 2004;70A(1):10‐19. doi:10.1002/jbm.a.30052.
معلومات مُعتمدة: Juvenile Diabetes Research Foundation International; National Science Foundation
فهرسة مساهمة: Keywords: foreign body capsule; foreign body reaction; macrophage polarization; plasma deposition; surface modification
المشرفين على المادة: 0 (Orosomucoid)
0 (Immobilized Proteins)
25249-16-5 (Polyhydroxyethyl Methacrylate)
0 (Lipopolysaccharides)
تواريخ الأحداث: Date Created: 20231025 Date Completed: 20240618 Latest Revision: 20240703
رمز التحديث: 20240703
DOI: 10.1002/jbm.a.37627
PMID: 37877518
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4965
DOI:10.1002/jbm.a.37627