دورية أكاديمية

State of the Science and Ethical Considerations for Preimplantation Genetic Testing for Monogenic Cystic Kidney Diseases and Ciliopathies.

التفاصيل البيبلوغرافية
العنوان: State of the Science and Ethical Considerations for Preimplantation Genetic Testing for Monogenic Cystic Kidney Diseases and Ciliopathies.
المؤلفون: Thompson WS; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.; Biomedical Ethics Research Program, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota.; Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota.; Division of Neonatal Medicine, Mayo Clinic, Rochester, Minnesota., Babayev SN; Division of Reproductive Endocrinology and Infertility, Mayo Clinic, Rochester, Minnesota.; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota., McGowan ML; Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.; Biomedical Ethics Research Program, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota., Kattah AG; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota., Wick MJ; Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota.; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota., Bendel-Stenzel EM; Division of Neonatal Medicine, Mayo Clinic, Rochester, Minnesota., Chebib FT; Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida., Harris PC; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota., Dahl NK; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota., Torres VE; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota., Hanna C; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.; Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
المصدر: Journal of the American Society of Nephrology : JASN [J Am Soc Nephrol] 2024 Feb 01; Vol. 35 (2), pp. 235-248. Date of Electronic Publication: 2023 Oct 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wolters Kluwer Health, on behalf of the American Society of Nephrology Country of Publication: United States NLM ID: 9013836 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1533-3450 (Electronic) Linking ISSN: 10466673 NLM ISO Abbreviation: J Am Soc Nephrol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : Hagerstown, MD : Wolters Kluwer Health, on behalf of the American Society of Nephrology
Original Publication: Baltimore, MD : Williams & Wilkins, c1990-
مواضيع طبية MeSH: Preimplantation Diagnosis* , Polycystic Kidney Diseases*/diagnosis , Polycystic Kidney Diseases*/genetics, Pregnancy ; Female ; Child ; Humans ; Prospective Studies ; Genetic Testing ; Fertilization in Vitro
مستخلص: There is a broad phenotypic spectrum of monogenic polycystic kidney diseases (PKDs). These disorders often involve cilia-related genes and lead to the development of fluid-filled cysts and eventual kidney function decline and failure. Preimplantation genetic testing for monogenic (PGT-M) disorders has moved into the clinical realm. It allows prospective parents to avoid passing on heritable diseases to their children, including monogenic PKD. The PGT-M process involves embryo generation through in vitro fertilization, with subsequent testing of embryos and selective transfer of those that do not harbor the specific disease-causing variant(s). There is a growing body of literature supporting the success of PGT-M for autosomal-dominant and autosomal-recessive PKD, although with important technical limitations in some cases. This technology can be applied to many other types of monogenic PKD and ciliopathies despite the lack of existing reports in the literature. PGT-M for monogenic PKD, like other forms of assisted reproductive technology, raises important ethical questions. When considering PGT-M for kidney diseases, as well as the potential to avoid disease in future generations, there are regulatory and ethical considerations. These include limited government regulation and unstandardized consent processes, potential technical errors, high cost and equity concerns, risks associated with pregnancy for mothers with kidney disease, and the impact on all involved in the process, including the children who were made possible with this technology.
(Copyright © 2023 by the American Society of Nephrology.)
References: Hildebrandt F, Benzing T, Katsanis N. Ciliopathies. New Engl J Med. 2011;364(16):1533–1543. doi: 10.1056/NEJMra1010172. (PMID: 10.1056/NEJMra1010172)
Wiesel A, Queisser-Luft A, Clementi M, Bianca S, Stoll C. EUROSCAN Study Group. Prenatal detection of congenital renal malformations by fetal ultrasonographic examination: an analysis of 709,030 births in 12 European countries. Eur J Med Genet. 2005;48(2):131–144. doi: 10.1016/j.ejmg.2005.02.003. (PMID: 10.1016/j.ejmg.2005.02.003)
Iglesias CG, Torres VE, Offord KP, Holley KE, Beard CM, Kurland LT. Epidemiology of adult polycystic kidney disease, Olmsted County, Minnesota: 1935-1980. Am J Kidney Dis. 1983;2(6):630–639. doi: 10.1016/s0272-6386(83)80044-4. (PMID: 10.1016/s0272-6386(83)80044-4)
Harris PC, Torres VE. Polycystic kidney disease. Annu Rev Med. 2009;60:321–337. doi: 10.1146/annurev.med.60.101707.125712. (PMID: 10.1146/annurev.med.60.101707.125712)
Elliott MD, Rasouly HM, Gharavi AG. Genetics of kidney disease: the unexpected role of rare disorders. Annu Rev Med. 2023;74:353–367. doi: 10.1146/annurev-med-042921-101813. (PMID: 10.1146/annurev-med-042921-101813)
Xiao M, Shi H, Rao J, et al. Combined preimplantation genetic testing for genetic kidney disease: genetic risk identification, assisted reproductive cycle, and pregnancy outcome analysis. Front Med (Lausanne). 2022;9:936578. doi: 10.3389/fmed.2022.936578. (PMID: 10.3389/fmed.2022.936578)
Chaperon JL, Wemmer NM, McKanna TA, et al. Preimplantation genetic testing for kidney disease-related genes: a laboratory's experience. Am J Nephrol. 2021;52(8):684–690. doi: 10.1159/000518253. (PMID: 10.1159/000518253)
Berckmoes V, Verdyck P, De Becker P, et al. Factors influencing the clinical outcome of preimplantation genetic testing for polycystic kidney disease. Hum Reprod. 2019;34(5):949–958. doi: 10.1093/humrep/dez027. (PMID: 10.1093/humrep/dez027)
Stocker E, Johal S, Rippel L, Darrah R. Frequency of embryos appropriate for transfer following preimplantation genetic testing for monogenic disease. J Assist Reprod Genet. 2022;39(9):2043–2050. doi: 10.1007/s10815-022-02571-4. (PMID: 10.1007/s10815-022-02571-4)
Lau EC, Janson MM, Roesler MR, Avner ED, Strawn EY, Bick DP. Birth of a healthy infant following preimplantation PKHD1 haplotyping for autosomal recessive polycystic kidney disease using multiple displacement amplification. J Assist Reprod Genet. 2010;27(7):397–407. doi: 10.1007/s10815-010-9432-5. (PMID: 10.1007/s10815-010-9432-5)
Chebib FT, Torres VE. Autosomal dominant polycystic kidney disease: core curriculum 2016. Am J Kidney Dis. 2016;67(5):792–810. doi: 10.1053/j.ajkd.2015.07.037. (PMID: 10.1053/j.ajkd.2015.07.037)
Hughes J, Ward CJ, Peral B, et al. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995;10(2):151–160. doi: 10.1038/ng0695-151. (PMID: 10.1038/ng0695-151)
Mochizuki T, Wu G, Hayashi T, et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272(5266):1339–1342. doi: 10.1126/science.272.5266.1339. (PMID: 10.1126/science.272.5266.1339)
Hateboer N, v Dijk MA, Bogdanova N, et al. Comparison of phenotypes of polycystic kidney disease types 1 and 2. European PKD1-PKD2 Study Group. Lancet. 1999;353(9147):103–107. doi: 10.1016/s0140-6736(98)03495-3. (PMID: 10.1016/s0140-6736(98)03495-3)
Rossetti S, Strmecki L, Gamble V, et al. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet. 2001;68(1):46–63. doi: 10.1086/316939. (PMID: 10.1086/316939)
Audrézet MP, Corbiere C, Lebbah S, et al. Comprehensive PKD1 and PKD2 mutation analysis in prenatal autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2016;27(3):722–729. doi: 10.1681/ASN.2014101051. (PMID: 10.1681/ASN.2014101051)
Lemoine H, Raud L, Foulquier F, et al. Genomics England Research Consortium, Genkyst Study Group. Monoallelic pathogenic ALG5 variants cause atypical polycystic kidney disease and interstitial fibrosis. Am J Hum Genet. 2022;109(8):1484–1499. doi: 10.1016/j.ajhg.2022.06.013. (PMID: 10.1016/j.ajhg.2022.06.013)
Besse W, Chang AR, Luo JZ, et al. Regeneron Genetics Center. ALG9 mutation carriers develop kidney and liver cysts. J Am Soc Nephrol. 2019;30(11):2091–2102. doi: 10.1681/ASN.2019030298. (PMID: 10.1681/ASN.2019030298)
Cornec-Le Gall E, Olson RJ, Besse W, et al. Genkyst Study Group, HALT Progression of Polycystic Kidney Disease Group, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. Monoallelic mutations to DNAJB11 cause atypical autosomal-dominant polycystic kidney disease. Am J Hum Genet. 2018;102(5):832–844. doi: 10.1016/j.ajhg.2018.03.013. (PMID: 10.1016/j.ajhg.2018.03.013)
Porath B, Gainullin VG, Cornec-Le Gall E, et al. Genkyst Study Group, HALT Progression of Polycystic Kidney Disease Group, Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet. 2016;98(6):1193–1207. doi: 10.1016/j.ajhg.2016.05.004. (PMID: 10.1016/j.ajhg.2016.05.004)
Senum SR, Li YSM, Benson KA, et al. Genomics England Research Consortium, the HALT PKD, CRISP, DIPAK, ADPKD Modifier, and TAME PKD studies. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet. 2022;109(1):136–156. doi: 10.1016/j.ajhg.2021.11.016. (PMID: 10.1016/j.ajhg.2021.11.016)
Apple B, Sartori G, Moore B, et al. Individuals heterozygous for ALG8 protein-truncating variants are at increased risk of a mild cystic kidney disease. Kidney Int. 2023;103(3):607–615. doi: 10.1016/j.kint.2022.11.025. (PMID: 10.1016/j.kint.2022.11.025)
Claus LR, Chen C, Stallworth J, et al. Genomics England Research Consortium. Certain heterozygous variants in the kinase domain of the serine/threonine kinase NEK8 can cause an autosomal dominant form of polycystic kidney disease. Kidney Int. 2023;104(5):995–1007. doi: 10.1016/j.kint.2023.07.021. (PMID: 10.1016/j.kint.2023.07.021)
Devuyst O, Olinger E, Weber S, et al. Autosomal dominant tubulointerstitial kidney disease. Nat Rev Dis Primers. 2019;5(1):60. doi: 10.1038/s41572-019-0109-9. (PMID: 10.1038/s41572-019-0109-9)
Bockenhauer D, Jaureguiberry G. HNF1B-associated clinical phenotypes: the kidney and beyond. Pediatr Nephrol. 2016;31(5):707–714. doi: 10.1007/s00467-015-3142-2. (PMID: 10.1007/s00467-015-3142-2)
Clissold RL, Shaw-Smith C, Turnpenny P, et al. Chromosome 17q12 microdeletions but not intragenic HNF1B mutations link developmental kidney disease and psychiatric disorder. Kidney Int. 2016;90(1):203–211. doi: 10.1016/j.kint.2016.03.027. (PMID: 10.1016/j.kint.2016.03.027)
Shao A, Chan SC, Igarashi P. Role of transcription factor hepatocyte nuclear factor-1β in polycystic kidney disease. Cell Signal 2020;71:109568. doi: 10.1016/j.cellsig.2020.109568. (PMID: 10.1016/j.cellsig.2020.109568)
Liebau MC. Early clinical management of autosomal recessive polycystic kidney disease. Pediatr Nephrol. 2021;36(11):3561–3570. doi: 10.1007/s00467-021-04970-8. (PMID: 10.1007/s00467-021-04970-8)
Bergmann C, Senderek J, Windelen E, et al. APN Arbeitsgemeinschaft für Pädiatrische Nephrologie. Clinical consequences of PKHD1 mutations in 164 patients with autosomal-recessive polycystic kidney disease (ARPKD). Kidney Int. 2005;67(3):829–848. doi: 10.1111/j.1523-1755.2005.00148.x. (PMID: 10.1111/j.1523-1755.2005.00148.x)
Ward CJ, Hogan MC, Rossetti S, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 2002;30(3):259–269. doi: 10.1038/ng833. (PMID: 10.1038/ng833)
Lu H, Galeano MCR, Ott E, et al. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nat Genet. 2017;49(7):1025–1034. doi: 10.1038/ng.3871. (PMID: 10.1038/ng.3871)
Yang C, Harafuji N, O'Connor AK, et al. Cystin genetic variants cause autosomal recessive polycystic kidney disease associated with altered Myc expression. Sci Rep. 2021;11(1):18274. doi: 10.1038/s41598-021-97046-4. (PMID: 10.1038/s41598-021-97046-4)
Feather SA, Woolf AS, Donnai D, Malcolm S, Winter RM. The oral-facial-digital syndrome type 1 (OFD1), a cause of polycystic kidney disease and associated malformations, maps to Xp22.2-Xp22.3. Hum Mol Genet. 1997;6(7):1163–1167. doi: 10.1093/hmg/6.7.1163. (PMID: 10.1093/hmg/6.7.1163)
Henske EP, Jóźwiak S, Kingswood JC, Sampson JR, Thiele EA. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035. doi: 10.1038/nrdp.2016.35. (PMID: 10.1038/nrdp.2016.35)
Brook-Carter PT, Peral B, Ward CJ, et al. Deletion of the TSC2 and PKD1 genes associated with severe infantile polycystic kidney disease--a contiguous gene syndrome. Nat Genet. 1994;8(4):328–332. doi: 10.1038/ng1294-328. (PMID: 10.1038/ng1294-328)
Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet. 2011;19(6):617–623. doi: 10.1038/ejhg.2010.175. (PMID: 10.1038/ejhg.2010.175)
Spithoven EM, Kramer A, Meijer E, et al. ERA-EDTA Registry, EuroCYST Consortium, WGIKD. Renal replacement therapy for autosomal dominant polycystic kidney disease (ADPKD) in Europe: prevalence and survival--an analysis of data from the ERA-EDTA Registry. Nephrol Dial Transplant. 2014;29 Suppl 4(suppl 4):iv15–25. doi: 10.1093/ndt/gfu017. (PMID: 10.1093/ndt/gfu017)
United States Renal Data System. 2018 USDRS Annual Data Report: Epidemiology of Kidney Disease in the United States. https://www.usrds.org/2018/view/Default.aspx.
Cloutier M, Manceur AM, Guerin A, Aigbogun MS, Oberdhan D, Gauthier-Loiselle M. The societal economic burden of autosomal dominant polycystic kidney disease in the United States. BMC Health Serv Res. 2020;20(1):126. doi: 10.1186/s12913-020-4974-4. (PMID: 10.1186/s12913-020-4974-4)
Torres VE, Chapman AB, Devuyst O, et al. TEMPO 3:4 Trial Investigators. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–2418. doi: 10.1056/NEJMoa1205511. (PMID: 10.1056/NEJMoa1205511)
Gainullin VG, Hopp K, Ward CJ, Hommerding CJ, Harris PC. Polycystin-1 maturation requires polycystin-2 in a dose-dependent manner. J Clin Invest. 2015;125(2):607–620. doi: 10.1172/JCI76972. (PMID: 10.1172/JCI76972)
Song X, Di Giovanni V, He N, et al. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet. 2009;18(13):2328–2343. doi: 10.1093/hmg/ddp165. (PMID: 10.1093/hmg/ddp165)
De Rycke M, Berckmoes V. Preimplantation genetic testing for monogenic disorders. Genes (Basel). 2020;11(8):871. doi: 10.3390/genes11080871. (PMID: 10.3390/genes11080871)
Handyside AH, Harton GL, Mariani B, et al. Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet. 2010;47(10):651–658. doi: 10.1136/jmg.2009.069971. (PMID: 10.1136/jmg.2009.069971)
Coonen E, van Montfoort A, Carvalho F, et al. ESHRE PGT Consortium data collection XVI-XVIII: cycles from 2013 to 2015. Hum Reprod Open 2020;2020(4):hoaa043. doi: 10.1093/hropen/hoaa043. (PMID: 10.1093/hropen/hoaa043)
Brezina PR, Anchan R, Kearns WG. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences? J Assist Reprod Genet. 2016;33(7):823–832. doi: 10.1007/s10815-016-0740-2. (PMID: 10.1007/s10815-016-0740-2)
Kung A, Munné S, Bankowski B, Coates A, Wells D. Validation of next-generation sequencing for comprehensive chromosome screening of embryos. Reprod Biomed Online. 2015;31(6):760–769. doi: 10.1016/j.rbmo.2015.09.002. (PMID: 10.1016/j.rbmo.2015.09.002)
Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed. 2013;98(6):236–238. doi: 10.1136/archdischild-2013-304340. (PMID: 10.1136/archdischild-2013-304340)
Peces R, Mena R, Peces C, et al. Birth of two healthy girls following preimplantation genetic diagnosis and gestational surrogacy in a rapidly progressive autosomal dominant polycystic kidney disease case using tolvaptan. Clin Kidney J. 2021;14(8):1987–1989. doi: 10.1093/ckj/sfab082. (PMID: 10.1093/ckj/sfab082)
Ethics Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org. Disposition of unclaimed embryos: an Ethics Committee opinion. Fertil Steril. 2021;116(1):48–53. doi: 10.1016/j.fertnstert.2021.02.020. (PMID: 10.1016/j.fertnstert.2021.02.020)
Symmons O, Váradi A, Arányi T. How segmental duplications shape our genome: recent evolution of ABCC6 and PKD1 Mendelian disease genes. Mol Biol Evol. 2008;25(12):2601–2613. doi: 10.1093/molbev/msn202. (PMID: 10.1093/molbev/msn202)
Kirsch S, Pasantes J, Wolf A, et al. Chromosomal evolution of the PKD1 gene family in primates. BMC Evol Biol. 2008;8:263. doi: 10.1186/1471-2148-8-263. (PMID: 10.1186/1471-2148-8-263)
Lin T, Luo J, Yu H, et al. Blocker displacement amplification-based genetic diagnosis for autosomal dominant polycystic kidney disease and the clinical outcomes of preimplantation genetic testing. J Assist Reprod Genet. 2023;40(4):783–792. doi: 10.1007/s10815-023-02722-1. (PMID: 10.1007/s10815-023-02722-1)
Zeevi DA, Renbaum P, Ron-El R, et al. Preimplantation genetic diagnosis in genomic regions with duplications and pseudogenes: long-range PCR in the single-cell assay. Hum Mutat. 2013;34(5):792–799. doi: 10.1002/humu.22298. (PMID: 10.1002/humu.22298)
Wang Y, Zhai F, Guan S, et al. A comprehensive PGT-M strategy for ADPKD patients with de novo PKD1 mutations using affected embryo or gametes as proband. J Assist Reprod Genet. 2021;38(9):2425–2434. doi: 10.1007/s10815-021-02188-z. (PMID: 10.1007/s10815-021-02188-z)
Shi H, Niu W, Liu Y, et al. A novel monogenic preimplantation genetic testing strategy for sporadic polycystic kidney caused by de novo PKD1 mutation. Clin Genet. 2021;99(2):250–258. doi: 10.1111/cge.13871. (PMID: 10.1111/cge.13871)
Snoek R, Stokman MF, Lichtenbelt KD, et al. Preimplantation genetic testing for monogenic kidney disease. Clin J Am Soc Nephrol. 2020;15(9):1279–1286. doi: 10.2215/CJN.03550320. (PMID: 10.2215/CJN.03550320)
Sun M, Xue C, Lu Y, et al. The fertility willingness and acceptability of preimplantation genetic testing in Chinese patients with autosomal dominant polycystic kidney disease. BMC Nephrol. 2020;21(1):147. doi: 10.1186/s12882-020-01785-x. (PMID: 10.1186/s12882-020-01785-x)
Amagwula T, Chang PL, Hossain A, Tyner J, Rivers AL, Phelps JY. Preimplantation genetic diagnosis: a systematic review of litigation in the face of new technology. Fertil Steril. 2012;98(5):1277–1282. doi: 10.1016/j.fertnstert.2012.07.1100. (PMID: 10.1016/j.fertnstert.2012.07.1100)
Swift O, Vilar E, Rahman B, Side L, Gale DP. Attitudes in patients with autosomal dominant polycystic kidney disease toward prenatal diagnosis and preimplantation genetic diagnosis. Genet Test Mol Biomarkers. 2016;20(12):741–746. doi: 10.1089/gtmb.2016.0050. (PMID: 10.1089/gtmb.2016.0050)
Neal SA, Morin SJ, Franasiak JM, et al. Preimplantation genetic testing for aneuploidy is cost-effective, shortens treatment time, and reduces the risk of failed embryo transfer and clinical miscarriage. Fertil Steril. 2018;110(5):896–904. doi: 10.1016/j.fertnstert.2018.06.021. (PMID: 10.1016/j.fertnstert.2018.06.021)
van den Berg MM, van Maarle MC, van Wely M, Goddijn M. Genetics of early miscarriage. Biochim Biophys Acta. 2012;1822(12):1951–1959. doi: 10.1016/j.bbadis.2012.07.001. (PMID: 10.1016/j.bbadis.2012.07.001)
Ljunger E, Cnattingius S, Lundin C, Annerén G. Chromosomal anomalies in first-trimester miscarriages. Acta Obstet Gynecol Scand. 2005;84(11):1103–1107. doi: 10.1111/j.0001-6349.2005.00882.x. (PMID: 10.1111/j.0001-6349.2005.00882.x)
Strom CM, Ginsberg N, Applebaum M, et al. Analyses of 95 first-trimester spontaneous abortions by chorionic villus sampling and karyotype. J Assist Reprod Genet. 1992;9(5):458–461. doi: 10.1007/BF01204052. (PMID: 10.1007/BF01204052)
Nie X, Arend LJ. Pkd1 is required for male reproductive tract development. Mech Dev. 2013;130(11-12):567–576. doi: 10.1016/j.mod.2013.07.006. (PMID: 10.1016/j.mod.2013.07.006)
Mir Pardo P, Martínez-Conejero JA, Martín J, Simón C, Cervero A. Combined preimplantation genetic testing for autosomal dominant polycystic kidney disease: consequences for embryos available for transfer. Genes (Basel). 2020;11(6):692. doi: 10.3390/genes11060692. (PMID: 10.3390/genes11060692)
Li W, Liu G, Zhao X, et al. Genetic testing, ultrasonography and preimplantation genetic testing of men with autosomal dominant polycystic kidney disease in Hunan, China. Andrologia. 2022;54(1):e14273. doi: 10.1111/and.14273. (PMID: 10.1111/and.14273)
Thuesen LL, Smitz J, Loft A, Nyboe Andersen A. Endocrine effects of hCG supplementation to recombinant FSH throughout controlled ovarian stimulation for IVF: a dose-response study. Clin Endocrinol (Oxf). 2013;79(5):708–715. doi: 10.1111/cen.12186. (PMID: 10.1111/cen.12186)
Pereira N, Elias RT, Christos PJ, et al. Supraphysiologic estradiol is an independent predictor of low birth weight in full-term singletons born after fresh embryo transfer. Hum Reprod. 2017;32(7):1410–1417. doi: 10.1093/humrep/dex095. (PMID: 10.1093/humrep/dex095)
Practice Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org. Practice Committee of the American Society for Reproductive Medicine. Evidence-based treatments for couples with unexplained infertility: a guideline. Fertil Steril. 2020;113(2):305–322. doi: 10.1016/j.fertnstert.2019.10.014. (PMID: 10.1016/j.fertnstert.2019.10.014)
Fujitake E, Jaspal R, Monasta L, Stampalija T, Lees C. Acute cardiovascular changes in women undergoing in vitro fertilisation (IVF), a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;248:245–251. doi: 10.1016/j.ejogrb.2020.01.033. (PMID: 10.1016/j.ejogrb.2020.01.033)
Bhaduri M, Gama RM, Copeland T, et al. Systematic review of pregnancy and renal outcomes for women with chronic kidney disease receiving assisted reproductive therapy. J Nephrol. 2022;35(9):2227–2236. doi: 10.1007/s40620-022-01510-x. (PMID: 10.1007/s40620-022-01510-x)
Malizia BA, Hacker MR, Penzias AS. Cumulative live-birth rates after in vitro fertilization. N Engl J Med. 2009;360(3):236–243. doi: 10.1056/NEJMoa0803072. (PMID: 10.1056/NEJMoa0803072)
Schirmer DA III, Kulkarni AD, Zhang Y, Kawwass JF, Boulet SL, Kissin DM. Ovarian hyperstimulation syndrome after assisted reproductive technologies: trends, predictors, and pregnancy outcomes. Fertil Steril. 2020;114(3):567–578. doi: 10.1016/j.fertnstert.2020.04.004. (PMID: 10.1016/j.fertnstert.2020.04.004)
Sherstha R, McKinley C, Russ P, et al. Postmenopausal estrogen therapy selectively stimulates hepatic enlargement in women with autosomal dominant polycystic kidney disease. Hepatology. 1997;26(5):1282–1286. doi: 10.1002/hep.510260528. (PMID: 10.1002/hep.510260528)
Gabow PA, Johnson AM, Kaehny WD, Manco-Johnson ML, Duley IT, Everson GT. Risk factors for the development of hepatic cysts in autosomal dominant polycystic kidney disease. Hepatology. 1990;11(6):1033–1037. doi: 10.1002/hep.1840110619. (PMID: 10.1002/hep.1840110619)
Stringer KD, Komers R, Osman SA, Oyama TT, Lindsley JN, Anderson S. Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int. 2005;68(4):1729–1739. doi: 10.1111/j.1523-1755.2005.00589.x. (PMID: 10.1111/j.1523-1755.2005.00589.x)
Silbiger S, Neugarten J. Gender and human chronic renal disease. Gend Med. 2008;5(suppl A):S3–S10. doi: 10.1016/j.genm.2008.03.002. (PMID: 10.1016/j.genm.2008.03.002)
Kattah AG, Smith CY, Gazzuola Rocca L, Grossardt BR, Garovic VD, Rocca WA. CKD in patients with bilateral oophorectomy. Clin J Am Soc Nephrol. 2018;13(11):1649–1658. doi: 10.2215/CJN.03990318. (PMID: 10.2215/CJN.03990318)
Gonzalez Suarez ML, Kattah A, Grande JP, Garovic V. Renal disorders in pregnancy: core curriculum 2019. Am J Kidney Dis. 2019;73(1):119–130. doi: 10.1053/j.ajkd.2018.06.006. (PMID: 10.1053/j.ajkd.2018.06.006)
Wu M, Wang D, Zand L, et al. Pregnancy outcomes in autosomal dominant polycystic kidney disease: a case-control study. J Matern Fetal Neonatal Med. 2016;29(5):807–812. doi: 10.3109/14767058.2015.1019458. (PMID: 10.3109/14767058.2015.1019458)
Piccoli GB, Cabiddu G, Attini R, et al. Risk of adverse pregnancy outcomes in women with CKD. J Am Soc Nephrol. 2015;26(8):2011–2022. doi: 10.1681/ASN.2014050459. (PMID: 10.1681/ASN.2014050459)
Zhang JJ, Ma XX, Hao L, Liu LJ, Lv JC, Zhang H. A systematic review and meta-analysis of outcomes of pregnancy in CKD and CKD outcomes in pregnancy. Clin J Am Soc Nephrol. 2015;10(11):1964–1978. doi: 10.2215/CJN.09250914. (PMID: 10.2215/CJN.09250914)
Fox D. Privatizing procreative liberty in the shadow of eugenics. J Law Biosci. 2018;5(2):355–374. doi: 10.1093/jlb/lsy011. (PMID: 10.1093/jlb/lsy011)
Ryan MA. The argument for unlimited procreative liberty: a feminist critique. Hastings Cent Rep. 1990;20(4):6–12. doi: 10.2307/3562759. (PMID: 10.2307/3562759)
Ethics Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org. Ethics Committee of the American Society for Reproductive Medicine. Use of preimplantation genetic testing for monogenic defects (PGT-M) for adult-onset conditions: an Ethics Committee opinion. Fertil Steril. 2018;109(6):989–992. doi: 10.1016/j.fertnstert.2018.04.003. (PMID: 10.1016/j.fertnstert.2018.04.003)
Ethics Committee of American Society for Reproductive Medicine. Use of preimplantation genetic diagnosis for serious adult onset conditions: a committee opinion. Fertil Steril. 2013;100(1):54–57. doi: 10.1016/j.fertnstert.2013.02.043. (PMID: 10.1016/j.fertnstert.2013.02.043)
Ethics Committee of the American Society for Reproductive Medicine. Electronic address: asrm@asrm.org. Provision of fertility services for women at increased risk of complications during fertility treatment or pregnancy: an Ethics Committee opinion. Fertil Steril. 2022;117(4):713–719. doi: 10.1016/j.fertnstert.2021.12.030. (PMID: 10.1016/j.fertnstert.2021.12.030)
Ethics Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org. Ethics Committee of the American Society for Reproductive Medicine. Transferring embryos with genetic anomalies detected in preimplantation testing: an Ethics Committee Opinion. Fertil Steril. 2017;107(5):1130–1135. doi: 10.1016/j.fertnstert.2017.02.121. (PMID: 10.1016/j.fertnstert.2017.02.121)
PKD Foundation. Polycystic Kidney Disease 2022. https://pkdcure.org/.
Johnson WG, Bowman DM. Inherited regulation for advanced ARTs: comparing jurisdictions' applications of existing governance regimes to emerging reproductive technologies. J Law Biosci. 2022;9(1):lsab034. doi: 10.1093/jlb/lsab034. (PMID: 10.1093/jlb/lsab034)
Carvalho F, Coonen E, Goossens V, et al. ESHRE PGT Consortium Steering Committee. ESHRE PGT Consortium good practice recommendations for the organisation of PGT. Hum Reprod Open. 2020;2020(3):hoaa021. doi: 10.1093/hropen/hoaa021. (PMID: 10.1093/hropen/hoaa021)
Kokkali G, Coticchio G, Bronet F, et al. ESHRE PGT Consortium and SIG-Embryology Biopsy Working Group. ESHRE PGT Consortium and SIG Embryology good practice recommendations for polar body and embryo biopsy for PGT. Hum Reprod Open. 2020;2020(3):hoaa020. doi: 10.1093/hropen/hoaa020. (PMID: 10.1093/hropen/hoaa020)
Carvalho F, Moutou C, Dimitriadou E, et al. ESHRE PGT-M Working Group. ESHRE PGT Consortium good practice recommendations for the detection of monogenic disorders. Hum Reprod Open. 2020;2020(3). doi: 10.1093/hropen/hoaa018. (PMID: 10.1093/hropen/hoaa018)
Coonen E, Rubio C, Christopikou D, et al. ESHRE PGT-SR/PGT-A Working Group. ESHRE PGT Consortium good practice recommendations for the detection of structural and numerical chromosomal aberrations. Hum Reprod Open. 2020;2020(3):hoaa017. doi: 10.1093/hropen/hoaa017. (PMID: 10.1093/hropen/hoaa017)
Harper JC, Wilton L, Traeger-Synodinos J, et al. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update. 2012;18(3):234–247. doi: 10.1093/humupd/dmr052. (PMID: 10.1093/humupd/dmr052)
Zuckerman S, Gooldin S, Zeevi DA, Altarescu G. The decision-making process, experience, and perceptions of preimplantation genetic testing (PGT) users. J Assist Reprod Genet. 2020;37(8):1903–1912. doi: 10.1007/s10815-020-01840-4. (PMID: 10.1007/s10815-020-01840-4)
McGowan ML, Burant CJ, Moran R, Farrell R. Patient education and informed consent for preimplantation genetic diagnosis: health literacy for genetics and assisted reproductive technology. Genet Med. 2009;11(9):640–645. doi: 10.1097/GIM.0b013e3181ac6b52. (PMID: 10.1097/GIM.0b013e3181ac6b52)
Adebayo FO, Ameh N, Adesiyun AG, Ekele BA, Wada I. Correlation of female age with outcome of IVF in a low-resource setting. Int J Gynaecol Obstet. 2023;161(1):283–288. doi: 10.1002/ijgo.14545. (PMID: 10.1002/ijgo.14545)
Murphy EL, Droher ML, DiMaio MS, Dahl NK. Preimplantation genetic diagnosis counseling in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 2018;72(6):866–872. doi: 10.1053/j.ajkd.2018.01.048. (PMID: 10.1053/j.ajkd.2018.01.048)
Ulker A, Evans MB, Craig LB. The impact of the Dobbs decision on in-vitro fertilization and fertility care. Curr Opin Obstet Gynecol. 2023;35(4):306–310. doi: 10.1097/GCO.0000000000000888. (PMID: 10.1097/GCO.0000000000000888)
Steinbock B. 416 moral status, moral value, and human embryos: implications for stem cell research. In: Steinbock B, ed. The Oxford Handbook of Bioethics. Oxford University Press; 2009.
Blackford R. . J Med Ethics. 2006;32(3):177–180. doi: 10.1136/jme.2004.011346. (PMID: 10.1136/jme.2004.011346)
Letterie G, Fox D. Legal personhood and frozen embryos: implications for fertility patients and providers in post-Roe America. J Law Biosci. 2023;10(1):lsad006. doi: 10.1093/jlb/lsad006. (PMID: 10.1093/jlb/lsad006)
Duffy CR. Multifetal gestations and associated perinatal risks. Neoreviews. 2021;22(11):e734–e46. doi: 10.1542/neo.22-11-e734. (PMID: 10.1542/neo.22-11-e734)
Djuwantono T, Aviani JK, Permadi W, Achmad TH, Halim D. Risk of neurodevelopmental disorders in children born from different ART treatments: a systematic review and meta-analysis. J Neurodev Disord. 2020;12(1):33. doi: 10.1186/s11689-020-09347-w. (PMID: 10.1186/s11689-020-09347-w)
Bergh C, Wennerholm UB. Long-term health of children conceived after assisted reproductive technology. Ups J Med Sci. 2020;125(2):152–157. doi: 10.1080/03009734.2020.1729904. (PMID: 10.1080/03009734.2020.1729904)
Alukal JP, Lamb DJ. Intracytoplasmic sperm injection (ICSI)–what are the risks? Urol Clin North Am. 2008;35(2):277–288. doi: 10.1016/j.ucl.2008.01.004. (PMID: 10.1016/j.ucl.2008.01.004)
Esteves SC, Roque M, Bedoschi G, Haahr T, Humaidan P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat Rev Urol. 2018;15(9):535–562. doi: 10.1038/s41585-018-0051-8. (PMID: 10.1038/s41585-018-0051-8)
Jwa SC, Jwa J, Kuwahara A, Irahara M, Ishihara O, Saito H. Male subfertility and the risk of major birth defects in children born after in vitro fertilization and intracytoplasmic sperm injection: a retrospective cohort study. BMC Pregnancy Childbirth. 2019;19(1):192. doi: 10.1186/s12884-019-2322-7. (PMID: 10.1186/s12884-019-2322-7)
Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC. The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod. 2009;24(5):1221–1228. doi: 10.1093/humrep/den488. (PMID: 10.1093/humrep/den488)
Harton G, Braude P, Lashwood A, et al. European Society for Human Reproduction and Embryology ESHRE PGD Consortium. ESHRE PGD consortium best practice guidelines for organization of a PGD centre for PGD/preimplantation genetic screening. Hum Reprod. 2011;26(1):14–24. doi: 10.1093/humrep/deq229. (PMID: 10.1093/humrep/deq229)
Hardy T. The role of prenatal diagnosis following preimplantation genetic testing for single-gene conditions: a historical overview of evolving technologies and clinical practice. Prenat Diagn. 2020;40(6):647–651. doi: 10.1002/pd.5662. (PMID: 10.1002/pd.5662)
Salomon LJ, Sotiriadis A, Wulff CB, Odibo A, Akolekar R. Risk of miscarriage following amniocentesis or chorionic villus sampling: systematic review of literature and updated meta-analysis. Ultrasound Obstet Gynecol. 2019;54(4):442–451. doi: 10.1002/uog.20353. (PMID: 10.1002/uog.20353)
Dickenson D. Ethical issues in maternal–fetal medicine. J R Soc Med. 2002;95(7):371–372. PMC: 1279947.
Levine AD, Boulet SL, Berry RM, Jamieson DJ, Alberta-Sherer HB, Kissin DM. Assessing the use of assisted reproductive technology in the United States by non-United States residents. Fertil Steril. 2017;108(5):815–821. doi: 10.1016/j.fertnstert.2017.07.1168. (PMID: 10.1016/j.fertnstert.2017.07.1168)
Klipstein S. Parenting in the age of preimplantation gene editing. Hastings Cent Rep. 2017;47(suppl 3):S28–S33. doi: 10.1002/hast.792. (PMID: 10.1002/hast.792)
معلومات مُعتمدة: R01 DK058816 United States DK NIDDK NIH HHS
تواريخ الأحداث: Date Created: 20231026 Date Completed: 20240202 Latest Revision: 20240702
رمز التحديث: 20240703
مُعرف محوري في PubMed: PMC10843344
DOI: 10.1681/ASN.0000000000000253
PMID: 37882743
قاعدة البيانات: MEDLINE
الوصف
تدمد:1533-3450
DOI:10.1681/ASN.0000000000000253