دورية أكاديمية

Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates.

التفاصيل البيبلوغرافية
العنوان: Programmable late-stage functionalization of bridge-substituted bicyclo[1.1.1]pentane bis-boronates.
المؤلفون: Yang Y; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA., Tsien J; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA., Dykstra R; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA., Chen SJ; Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA., Wang JB; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA., Merchant RR; Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA., Hughes JME; Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA., Peters BK; Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA., Gutierrez O; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA. og.labs@tamu.edu.; Department of Chemistry, Texas A&M University, College Station, TX, USA. og.labs@tamu.edu., Qin T; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA. tian.qin@utsouthwestern.edu.
المصدر: Nature chemistry [Nat Chem] 2024 Feb; Vol. 16 (2), pp. 285-293. Date of Electronic Publication: 2023 Oct 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101499734 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1755-4349 (Electronic) Linking ISSN: 17554330 NLM ISO Abbreviation: Nat Chem Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Original Publication: London : Nature Pub. Group
مستخلص: Modular functionalization enables versatile exploration of chemical space and has been broadly applied in structure-activity relationship (SAR) studies of aromatic scaffolds during drug discovery. Recently, the bicyclo[1.1.1]pentane (BCP) motif has increasingly received attention as a bioisosteric replacement of benzene rings due to its ability to improve the physicochemical properties of prospective drug candidates, but studying the SARs of C 2 -substituted BCPs has been heavily restricted by the need for multistep de novo synthesis of each analogue of interest. Here we report a programmable bis-functionalization strategy to enable late-stage sequential derivatization of BCP bis-boronates, opening up opportunities to explore the SARs of drug candidates possessing multisubstituted BCP motifs. Our approach capitalizes on the inherent chemoselectivity exhibited by BCP bis-boronates, enabling highly selective activation and functionalization of bridgehead (C 3 )-boronic pinacol esters (Bpin), leaving the C 2 -Bpin intact and primed for subsequent derivatization. These selective transformations of both BCP bridgehead (C 3 ) and bridge (C 2 ) positions enable access to C 1 ,C 2 -disubstituted and C 1 ,C 2 ,C 3 -trisubstituted BCPs that encompass previously unexplored chemical space.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009). (PMID: 1982777810.1021/jm901241e)
Talele, T. T. Opportunities for tapping into three-dimensional chemical space through a quaternary carbon. J. Med. Chem. 63, 13291–13315 (2020). (PMID: 3280511810.1021/acs.jmedchem.0c00829)
Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018). (PMID: 2956805110.1038/s41557-018-0021-z)
Costantino, G. et al. Synthesis and biological evaluation of 2-(3′-(1H-tetrazol-5-yl)bicyclo[1.1.1]pent-1-yl)glycine (S-TBPG), a novel mGlu1 receptor antagonist. Bioorg. Med. Chem. 9, 221–227 (2001). (PMID: 1124911410.1016/S0968-0896(00)00270-4)
Mikhailiuk, P. K. et al. Conformationally rigid trifluoromethyl‐substituted α‐amino acid designed for peptide structure analysis by solid‐state 19 F NMR spectroscopy. Angew. Chem. Int. Ed. 45, 5659–5661 (2006). (PMID: 10.1002/anie.200600346)
Stepan, A. F. et al. Application of the bicyclo[1.1.1]pentane motif as a nonclassical phenyl ring bioisostere in the design of a potent and orally active γ-secretase inhibitor. J. Med. Chem. 55, 3414–3424 (2012). (PMID: 2242088410.1021/jm300094u)
Westphal, M. V., Wolfstaedter, B. T., Plancher, J., Gatfield, J. & Carreira, E. M. Evaluation of tert-butyl isosteres: case studies of physicochemical and pharmacokinetic properties, efficacies, and activities. ChemMedChem 10, 461–469 (2015). (PMID: 2563080410.1002/cmdc.201402502)
Measom, N. D. et al. Investigation of a bicyclo[1.1.1]pentane as a phenyl replacement within an LpPLA2 Inhibitor. ACS Med. Chem. Lett. 8, 43–48 (2017). (PMID: 2810527310.1021/acsmedchemlett.6b00281)
Auberson, Y. P. et al. Improving nonspecific binding and solubility: bicycloalkyl groups and cubanes as para-phenyl bioisosteres. ChemMedChem 12, 590–598 (2017). (PMID: 2831964610.1002/cmdc.201700082)
Mikhaliuk, P. K. Saturated bioisoteres of benzene: where to go next? Org. Biomol. Chem. 17, 2839–2849 (2019). (PMID: 10.1039/C8OB02812E)
Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021). (PMID: 3459148810.1021/acs.jmedchem.1c01215)
Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016). (PMID: 26816372473089810.1126/science.aad6252)
Caputo, D. F. J. et al. Synthesis and applications of highly functionalized 1-halo-3-substituted bicyclo[1.1.1]pentanes. Chem. Sci. 9, 5295–5300 (2018). (PMID: 29997886600140310.1039/C8SC01355A)
Nugent, J. et al. A general route to bicyclo[1.1.1]pentanes through photoredox catalysis. ACS Catal. 9, 9568–9574 (2019). (PMID: 10.1021/acscatal.9b03190)
Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020). (PMID: 32066140714816910.1038/s41586-020-2060-z)
Trongsiriwat, N. et al. Reactions of 2‐aryl‐1,3‐dithianes and [1.1.1]propellane. Angew. Chem. Int. Ed. 58, 13416–13420 (2019). (PMID: 10.1002/anie.201905531)
Yu, S., Jing, C., Noble, A. & Aggarwal, V. K. 1,3-Difunctionalizations of [1.1.1]-propellane via 1,2-metalate rearrangements of boronate complexes. Angew. Chem. Int. Ed. 59, 3917–3921 (2020). (PMID: 10.1002/anie.201914875)
Kim, J. H., Ruffoni, A., Al-Faiyz, Y. S. S., Sheikh, N. & Leonori, D. Divergent strain‐release amino‐functionalization of [1.1.1]propellane with electrophilic nitrogen‐radicals. Angew. Chem. Int. Ed. 59, 8225–8231 (2020). (PMID: 10.1002/anie.202000140)
Garlets, Z. J. et al. Enantioselective C–H functionalization of bicyclo[1.1.1]pentanes. Nat. Catal. 3, 351–357 (2020). (PMID: 10.1038/s41929-019-0417-1)
Harmata, A. S., Spiller, T. E., Sowden, M. J. & Stephenson, C. R. J. Photochemical formal (4 + 2)-cycloaddition of imine-substituted bicyclo[1.1.1]pentanes and alkenes. J. Am. Chem. Soc. 143, 21223–21228 (2021). (PMID: 34902245924135610.1021/jacs.1c10541)
Yu, S., Jing, C., Noble, A. & Aggarwal, V. K. Iridium-catalyzed enantioselective synthesis of α-chiral bicyclo[1.1.1]pentanes by 1,3-difunctionalization of [1.1.1]propellane. Org. Lett. 22, 5650–5655 (2020). (PMID: 3263858710.1021/acs.orglett.0c02017)
Polites, V. C., Badir, S. O., Keess, S., Jolit, A. & Molander, G. A. Nickel-catalyzed decarboxylative cross-coupling of bicyclo[1.1.1]pentyl radicals enabled by electron donor-acceptor complex photoactivation. Org. Lett. 23, 4828–4833 (2021). (PMID: 34100624891787210.1021/acs.orglett.1c01558)
Nugent, J., Sterling, A. J., Frank, N., Mousseau, J. J. & Anderson, E. A. Synthesis of α-quaternary bicyclo[1.1.1]pentanes through synergistic organophotoredox and hydrogen atom transfer catalysis. Org. Lett. 23, 8628–8633 (2021). (PMID: 3469924810.1021/acs.orglett.1c03346)
Wong, M. L. J., Sterling, A. J., Mousseau, J. J., Duarte, F. & Anderson, E. A. Direct catalytic asymmetric synthesis of α-chiral bicyclo[1.1.1]pentanes. Nat. Commun. 12, 1644 (2021). (PMID: 33712595795504810.1038/s41467-021-21936-4)
Pickford, H. D. et al. Twofold radical-based synthesis of N,C-difunctionalized bicyclo[1.1.1]pentanes. J. Am. Chem. Soc. 143, 9729–9736 (2021). (PMID: 3416107610.1021/jacs.1c04180)
Denisenko, A., Garbuz, P., Shishkina, S. V., Voloshchuk, N. M. & Mikhailiuk, P. K. Saturated bioisosteres of ortho-substituted benzenes. Angew. Chem. Int. Ed. 59, 20515–20521 (2020). (PMID: 10.1002/anie.202004183)
Anderson, J. M., Measom, N. D., Murphy, J. A. & Poole, D. L. Bridge functionalisation of bicyclo[1.1.1]pentane derivatives. Angew. Chem. Int. Ed. 60, 24754–24769 (2021). (PMID: 10.1002/anie.202106352)
Zhao, J.-X. et al. 1,2-Difunctionalized bicyclo[1.1.1]pentanes: long-sought-after mimetics for ortho/meta-substituted arenes. Proc. Natl Acad. Sci. USA 118, e2108881118 (2021). (PMID: 34244445828597410.1073/pnas.2108881118)
Ma, X., Han, Y. & Bennett, D. J. Selective synthesis of 1-dialkylamino-2-alkylbicyclo-[1.1.1]pentanes. Org. Lett. 22, 9133–9138 (2020). (PMID: 3317001810.1021/acs.orglett.0c03612)
Ma, X., Sloman, D. L., Han, Y. & Bennett, D. J. A selective synthesis of 2,2-difluorobicyclo[1.1.1]pentane analogues:‘BCP-F2’. Org. Lett. 21, 7199–7203 (2019). (PMID: 3129457210.1021/acs.orglett.9b02026)
Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021). (PMID: 34584254873992010.1038/s41557-021-00786-z)
Applequist, D. E., Renken, T. L. & Wheeler, J. W. Polar substituent effects in 1,3-disubstituted bicyclo[1.1.1]pentanes. J. Org. Chem. 47, 4985–4995 (1982). (PMID: 10.1021/jo00146a031)
Bychek, R. M. et al. Difluoro-substituted bicyclo[1.1.1]pentanes for medicinal chemistry: design, synthesis, and characterization. J. Org. Chem. 84, 15106–15117 (2019). (PMID: 3155387510.1021/acs.joc.9b01947)
Ryan, E. M., Amber, L. T. & Edward, A. A. Synthesis and applications of polysubstituted bicyclo[1.1.0]butanes. J. Am. Chem. Soc. 143, 21246–21251 (2021). (PMID: 10.1021/jacs.1c11244)
Buskes, M. J. & Blanco, M. J. Impact of cross-coupling reactions in drug discovery and development. Molecules 25, 3493–3514 (2020). (PMID: 32751973743609010.3390/molecules25153493)
Wiberg, K. B. & Williams, V. Z. Bicyclo[1.1.1]pentane derivatives. J. Org. Chem. 35, 369–373 (1970). (PMID: 10.1021/jo00827a018)
Levin, M. D., Kaszynski, P. & Michl, J. Bicyclo[1.1.1]pentanes, [n]saffanes, [1.1.1]propellanes, and tricyclo[2.1.0.02,5]pentanes. Chem. Rev. 100, 169–223 (2000). (PMID: 1174923710.1021/cr990094z)
Jarret, R. M. & Cusumano, L. 13 C– 13 C coupling in [1.1.1]propellane. Tetrahedron Lett. 31, 171–174 (1990). (PMID: 10.1016/S0040-4039(00)94362-4)
Mlynarski, S. N., Schuster, C. H. & Morken, J. P. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling. Nature 505, 386–390 (2014). (PMID: 2435222910.1038/nature12781)
Blaisdell, T. P. & Morken, J. P. Hydroxyl-directed cross-coupling: a scalable synthesis of debromohamigeran E and other targets of interest. J. Am. Chem. Soc. 137, 8712 (2015). (PMID: 26125083489663810.1021/jacs.5b05477)
Liu, X., Sun, C., Mlynarski, S. & Morken, J. P. Synthesis and stereochemical assignment of arenolide. Org. Lett. 20, 1898 (2018). (PMID: 29565134631325110.1021/acs.orglett.8b00439)
Kaiser, D., Noble, A., Fasano, V. & Aggarwal, V. K. 1,2-Boron shifts of β-boryl radicals generated from bis-boronic esters using photoredox catalysis. J. Am. Chem. Soc. 141, 14104–14109 (2019). (PMID: 31461622761065710.1021/jacs.9b07564)
Fawcett, A. et al. Regio- and stereoselective homologation of 1,2-bis(boronic esters): stereocontrolled synthesis of 1,3-diols and Sch725674. Angew. Chem., Int. Ed. 55, 14663–14667 (2016). (PMID: 10.1002/anie.201608406)
Nóvoa, L., Trulli, L., Parra, A. & Tortosa, M. Stereoselective diboration of spirocyclo-butenes: a platform for the synthesis of spirocycles with orthogonal exit vectors. Angew. Chem. Int. Ed. 60, 11763–11768 (2021). (PMID: 10.1002/anie.202101445)
Crudden, C. M. et al. Iterative protecting group-free cross-coupling leading to chiral multiply arylated structures. Nat. Commun. 7, 11065–11071 (2016). (PMID: 27040494482201710.1038/ncomms11065)
Yang, Y. et al. Practical and modular construction of C(sp 3 )–rich alkyl boron compounds. J. Am. Soc. Chem. 143, 471–480 (2021). (PMID: 10.1021/jacs.0c11964)
Qi, X., Kohler, D. G., Hull, K. L. & Liu, P. Energy decomposition analyses reveal the origins of catalyst and nucleophile effects on regioselectivity in nucleopalladation of alkenes. J. Am. Chem. Soc. 141, 11892–11904 (2019). (PMID: 31322875676320610.1021/jacs.9b02893)
Li, H., Wang, L., Zhang, Y. & Wang, J. Transition-metal-free synthesis of pinacol alkylboronates from tosylhydrazones. Angew. Chem. Int. Ed. 51, 2943–2946 (2012). (PMID: 10.1002/anie.201108139)
Yang, C. T., Zhang, Z. Q., Liu, Y. C. & Liu, L. Copper-catalyzed cross-coupling reaction of organoboron compounds with primary alkyl halides and pseudohalides . Angew. Chem. Int. Ed. 50, 3904–3907 (2011). (PMID: 10.1002/anie.201008007)
Pozzi, D., Scanlan, E. M. & Renaud, P. A mild radical procedure for the reduction of B-alkylcatecholboranes to alkanes. J. Am. Chem. Soc. 127, 14204–14205 (2005). (PMID: 1621861310.1021/ja055691j)
André-Joyaux, E., Kuzovlev, A., Tappin, N. D. & Renaud, P. A general approach to deboronative radical chain reaction with pinacol alkylboronic esters. Angew. Chem. Int. Ed. 59, 13859–13864 (2020). (PMID: 10.1002/anie.202004012)
Lima, F. et al. A Lewis base catalysis approach for the photoredox activation of boronic acids and esters. Angew. Chem. Int. Ed. 56, 15136–15140 (2017). (PMID: 10.1002/anie.201709690)
Lima, F. et al. Organic photocatalysis for the radical couplings of boronic acid derivatives in batch and flow. Chem. Commun. 54, 5606–5609 (2018). (PMID: 10.1039/C8CC02169D)
Lima, F. et al. Visible light activation of boronic esters enables efficient photoredox C(sp 2 )–C(sp 3 ) cross-couplings in flow. Angew. Chem. Int. Ed. 55, 14085–14089 (2016). (PMID: 10.1002/anie.201605548)
Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014). (PMID: 24903560440648710.1126/science.1253647)
Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015). (PMID: 25836634457693410.1021/ja513079r)
Primer, D. N. & Molander, G. A. Enabling the cross-coupling of tertiary organoboron nucleophiles through radical-mediated alkyl transfer. J. Am. Chem. Soc. 139, 9847–9850 (2017). (PMID: 28719197560579210.1021/jacs.7b06288)
Yuan, M., Song, Z., Badir, S. O., Molander, G. A. & Gutierrez, O. On the nature of C(sp 3 )–C(sp 2 ) bond formation in nickel-catalyzed tertiary radical cross-couplings: a case study of Ni/photoredox catalytic crosscoupling of alkyl radicals and aryl halides. J. Am. Chem. Soc. 142, 7225–7234 (2020). (PMID: 32195579790974610.1021/jacs.0c02355)
Molander, G. A., Colombel, V. & Braz, V. A. Direct alkylation of heteroaryls using potassium alkyl- and alkoxymethyltrifluoroborates. Org. Lett. 13, 1852–1855 (2011). (PMID: 21391555306985910.1021/ol2003572)
Odachowski, M. et al. Development of enantiospecific coupling of secondary and tertiary boronic esters with aromatic compounds. J. Am. Chem. Soc. 138, 9521–9532 (2016). (PMID: 27384259506345510.1021/jacs.6b03963)
Nykaza, T. V. et al. Intermolecular reductive C–N cross coupling of nitroarenes and boronic acids by P III /P V =O catalysis. J. Am. Chem. Soc. 140, 15200–15205 (2018). (PMID: 30372615623574110.1021/jacs.8b10769)
Sadhu, K. M. & Matteson, D. S. (Chloromethyl)lithium: efficient generation and capture by boronic esters and a simple preparation of diisopropyl (chloromethyl)boronate. Organometallics 4, 1687–1689 (1985). (PMID: 10.1021/om00128a038)
Li, J., Grillo, A. S. & Burke, M. D. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks. Acc. Chem. Res. 48, 2297–2307 (2015). (PMID: 26200460468825710.1021/acs.accounts.5b00128)
Blair, D. J. et al. Automated iterative Csp 3 –C bond formation. Nature 604, 92–97 (2022). (PMID: 351348141050063510.1038/s41586-022-04491-w)
Angell, R. M. et al. Biphenyl amide p38 kinase inhibitors 4: DFG-in and DFG-out binding modes. Bioorg. Med. Chem. Lett. 18, 4433–4437 (2008). (PMID: 1860226210.1016/j.bmcl.2008.06.028)
Sauer, W. H. & Schwarz, M. K. Molecular shape diversity of combinatorial libraries: a prerequisite for broad bioactivity. J. Chem. Inf. Comput. Sci. 43, 987–1003 (2003). (PMID: 1276715810.1021/ci025599w)
Prosser, K. E., Stokes, R. W. & Cohen, S. M. Evaluation of 3‑dimensionality in approved and experimental drug space. ACS Med. Chem. Lett. 11, 1292–1298 (2020). During manuscript editing process after it is accepted, several publications on synthesis of bridge-substituted BCPs and BCP boronates were reported. (PMID: 32551014729471110.1021/acsmedchemlett.0c00121)
Dong, W. et al. Exploiting the sp 2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat. Chem. 14, 1068–1077 (2022). (PMID: 35864151942082410.1038/s41557-022-00979-0)
Yu, I. F. et al. Catalytic undirected borylation of tertiary C–H bonds in bicyclo[1.1.1]pentanes and bicyclo[2.1.1]hexanes. Nat. Chem. 15, 685–693 (2023). (PMID: 369734341068414110.1038/s41557-023-01159-4)
Wright, B. A. et al. Skeletal editing approach to bridge-functionalized bicyclo[1.1.1] pentanes from azabicyclo[2.1.1]hexanes. J. Am. Chem. Soc. 145, 0960–10966 (2023). (PMID: 10.1021/jacs.3c02616)
Garry, O. L. et al. Rapid access to 2-substituted bicyclo[1.1.1]pentanes. J. Am. Chem. Soc. 145, 3092–3100 (2023). (PMID: 366960891068014310.1021/jacs.2c12163)
معلومات مُعتمدة: R01 GM141088 United States GM NIGMS NIH HHS; R35 GM137797 United States GM NIGMS NIH HHS
تواريخ الأحداث: Date Created: 20231026 Latest Revision: 20240513
رمز التحديث: 20240514
مُعرف محوري في PubMed: PMC10922318
DOI: 10.1038/s41557-023-01342-7
PMID: 37884667
قاعدة البيانات: MEDLINE
الوصف
تدمد:1755-4349
DOI:10.1038/s41557-023-01342-7