دورية أكاديمية

Electron count and ligand composition influence the optical and chiroptical signatures of far-red and NIR-emissive DNA-stabilized silver nanoclusters.

التفاصيل البيبلوغرافية
العنوان: Electron count and ligand composition influence the optical and chiroptical signatures of far-red and NIR-emissive DNA-stabilized silver nanoclusters.
المؤلفون: Guha R; Department of Materials Science and Engineering, University of California Irvine CA 92697 USA stacy.copp@uci.edu., Gonzàlez-Rosell A; Department of Materials Science and Engineering, University of California Irvine CA 92697 USA stacy.copp@uci.edu., Rafik M; Department of Materials Science and Engineering, University of California Irvine CA 92697 USA stacy.copp@uci.edu., Arevalos N; Department of Materials Science and Engineering, University of California Irvine CA 92697 USA stacy.copp@uci.edu., Katz BB; Department of Chemistry, University of California Irvine CA 92697 USA., Copp SM; Department of Materials Science and Engineering, University of California Irvine CA 92697 USA stacy.copp@uci.edu.; Department of Physics and Astronomy, University of California Irvine CA 92697 USA.; Department of Chemical and Biomolecular Engineering, University of California Irvine CA 92697 USA.
المصدر: Chemical science [Chem Sci] 2023 Sep 11; Vol. 14 (41), pp. 11340-11350. Date of Electronic Publication: 2023 Sep 11 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Society of Chemistry Country of Publication: England NLM ID: 101545951 Publication Model: eCollection Cited Medium: Print ISSN: 2041-6520 (Print) Linking ISSN: 20416520 NLM ISO Abbreviation: Chem Sci Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : Royal Society of Chemistry, [2010]-
مستخلص: Near-infrared (NIR) emissive DNA-stabilized silver nanoclusters (Ag N -DNAs) are promising fluorophores in the biological tissue transparency windows. Hundreds of NIR-emissive Ag N -DNAs have recently been discovered, but their structure-property relationships remain poorly understood. Here, we investigate 19 different far-red and NIR emissive Ag N -DNA species stabilized by 10-base DNA templates, including well-studied emitters whose compositions and chiroptical properties have never been reported before. The molecular formula of each purified species is determined by high-resolution mass spectrometry and correlated to its optical absorbance, emission, and circular dichroism (CD) spectra. We find that there are four distinct compositions for Ag N -DNAs emissive at the far red/NIR spectral border. These emitters are either 8-electron clusters stabilized by two DNA oligomer copies or 6-electron clusters with one of three different ligand compositions: two oligomer copies, three oligomer copies, or two oligomer copies with additional chlorido ligands. Distinct optical and chiroptical signatures of 6-electron Ag N -DNAs correlate with each ligand composition. Ag N -DNAs with three oligomer ligands exhibit shorter Stokes shifts than Ag N -DNAs with two oligomers, and Ag N -DNAs with chlorido ligands have increased Stokes shifts and significantly suppressed visible CD transitions. Nanocluster electron count also significantly influences electronic structure and optical properties, with 6-electron and 8-electron Ag N -DNAs exhibiting distinct absorbance and CD spectral features. This study shows that the optical and chiroptical properties of NIR-emissive Ag N -DNAs are highly sensitive to nanocluster composition and illustrates the diversity of structure-property relationships for NIR-emissive Ag N -DNAs, which could be harnessed to precisely tune these emitters for bioimaging applications.
Competing Interests: There are no conflicts to declare.
(This journal is © The Royal Society of Chemistry.)
References: Nano Lett. 2016 Jun 8;16(6):3594-9. (PMID: 27187492)
J Am Chem Soc. 2019 Jul 24;141(29):11465-11470. (PMID: 30562465)
Chemistry. 2010 Mar 15;16(11):3285-90. (PMID: 20169599)
Phys Chem Chem Phys. 2018 Jun 20;20(24):16316-16319. (PMID: 29888362)
Adv Mater. 2014 Sep 3;26(33):5839-45. (PMID: 25043854)
Nucleic Acids Res. 2009 Apr;37(6):1713-25. (PMID: 19190094)
Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9157-62. (PMID: 18599443)
RSC Adv. 2020 Jun 23;10(40):23854-23860. (PMID: 35517326)
Chem Soc Rev. 2008 Sep;37(9):1847-59. (PMID: 18762834)
Chem Commun (Camb). 2023 Aug 29;59(70):10488-10491. (PMID: 37551832)
Acc Chem Res. 2014 Apr 15;47(4):1318-26. (PMID: 24588279)
J Phys Chem Lett. 2018 Nov 15;9(22):6605-6610. (PMID: 30380874)
Chem Commun (Camb). 2018 May 1;54(36):4569-4572. (PMID: 29664091)
Acc Chem Res. 2018 Nov 20;51(11):2756-2763. (PMID: 30339358)
ACS Nano. 2021 Oct 26;15(10):16019-16029. (PMID: 34592104)
ACS Nano. 2018 Aug 28;12(8):8240-8247. (PMID: 30059609)
Nanoscale. 2018 Nov 1;10(42):19701-19705. (PMID: 30350832)
ACS Nano. 2014 Jul 22;8(7):6883-92. (PMID: 24897004)
Chem Rev. 2022 Apr 27;122(8):7720-7839. (PMID: 34587741)
J Phys Chem Lett. 2023 Feb 23;14(7):1941-1948. (PMID: 36787099)
Nanoscale. 2021 Mar 4;13(8):4602-4613. (PMID: 33605954)
J Am Chem Soc. 2016 Mar 16;138(10):3469-77. (PMID: 26924556)
J Phys Chem Lett. 2021 Feb 4;12(4):1150-1154. (PMID: 33476515)
J Am Chem Soc. 2023 May 17;145(19):10721-10729. (PMID: 37155337)
J Am Chem Soc. 2004 Apr 28;126(16):5207-12. (PMID: 15099104)
J Phys Chem Lett. 2022 Sep 8;13(35):8305-8311. (PMID: 36037464)
Methods Appl Fluoresc. 2018 Feb 09;6(2):024004. (PMID: 29424368)
Annu Rev Phys Chem. 2018 Apr 20;69:205-229. (PMID: 29490202)
Chem Commun (Camb). 2020 Jun 14;56(47):6384-6387. (PMID: 32390014)
J Phys Chem Lett. 2014 Mar 20;5(6):959-963. (PMID: 24803994)
Methods Enzymol. 1992;211:389-406. (PMID: 1406317)
Chem Commun (Camb). 2012 Jun 11;48(46):5748-50. (PMID: 22552272)
J Am Chem Soc. 2022 Feb 9;144(5):2056-2061. (PMID: 35100506)
Phys Chem Chem Phys. 2021 Jun 23;23(24):13483-13489. (PMID: 34109959)
Sci Rep. 2015 May 14;5:10163. (PMID: 25973536)
Nanoscale Adv. 2021 Jan 21;3(5):1230-1260. (PMID: 36132866)
Angew Chem Int Ed Engl. 2019 Nov 25;58(48):17153-17157. (PMID: 31411360)
Nat Commun. 2015 May 11;6:7117. (PMID: 25960309)
Adv Mater. 2013 May 28;25(20):2797-803. (PMID: 23371742)
J Phys Chem A. 2015 Jul 23;119(29):8163-73. (PMID: 26067276)
Nanoscale. 2023 May 18;15(19):8597-8602. (PMID: 37186146)
ACS Nano. 2022 Oct 25;16(10):16322-16331. (PMID: 36124941)
J Chem Phys. 2021 Jun 28;154(24):244302. (PMID: 34241360)
Chem Sci. 2019 Apr 24;10(20):5326-5331. (PMID: 31191889)
ACS Nano. 2020 Aug 25;14(8):9687-9700. (PMID: 32672935)
تواريخ الأحداث: Date Created: 20231027 Latest Revision: 20231028
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC10599602
DOI: 10.1039/d3sc02931j
PMID: 37886084
قاعدة البيانات: MEDLINE
الوصف
تدمد:2041-6520
DOI:10.1039/d3sc02931j