دورية أكاديمية

Computational approaches to identify sites of phosphorylation.

التفاصيل البيبلوغرافية
العنوان: Computational approaches to identify sites of phosphorylation.
المؤلفون: Joyce AW; Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA.; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA., Searle BC; Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, Ohio, USA.; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.
المصدر: Proteomics [Proteomics] 2024 Apr; Vol. 24 (8), pp. e2300088. Date of Electronic Publication: 2023 Dec 24.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101092707 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9861 (Electronic) Linking ISSN: 16159853 NLM ISO Abbreviation: Proteomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH,
مواضيع طبية MeSH: Algorithms* , Search Engine*, Phosphorylation ; Mass Spectrometry/methods ; Phosphopeptides/metabolism
مستخلص: Due to their oftentimes ambiguous nature, phosphopeptide positional isomers can present challenges in bottom-up mass spectrometry-based workflows as search engine scores alone are often not enough to confidently distinguish them. Additional scoring algorithms can remedy this by providing confidence metrics in addition to these search results, reducing ambiguity. Here we describe challenges to interpreting phosphoproteomics data and review several different approaches to determine sites of phosphorylation for both data-dependent and data-independent acquisition-based workflows. Finally, we discuss open questions regarding neutral losses, gas-phase rearrangement, and false localization rate estimation experienced by both types of acquisition workflows and best practices for managing ambiguity in phosphosite determination.
(© 2023 The Authors. PROTEOMICS published by Wiley‐VCH GmbH.)
References: Mann, M., Ong, S.‐E., Grønborg, M., Steen, H., Jensen, O. N., & Pandey, A. (2002). Analysis of protein phosphorylation using mass spectrometry: Deciphering the phosphoproteome. Trends in Biotechnology, 20, 261–268.
Hart, G. W., Housley, M. P., & Slawson, C. (2007). Cycling of O‐linked β‐N‐acetylglucosamine on nucleocytoplasmic proteins. Nature, 446, 1017–1022.
Rathert, P., Dhayalan, A., Ma, H., & Jeltsch, A. (2008). Specificity of protein lysine methyltransferases and methods for detection of lysine methylation of non‐histone proteins. Molecular Biosystems, 4, 1186–1190.
Zhao, S., Xu, W., Jiang, W., Yu, W., Lin, Y., Zhang, T., Yao, J., Zhou, L., Zeng, Y., Li, H., Li, Y., Shi, J., An, W., Hancock, S. M., He, F., Qin, L., Chin, J., Yang, P., Chen, X., & Guan, K.‐L. (2010). Regulation of cellular metabolism by protein lysine acetylation. Science, 327, 1000–1004.
Kirkpatrick, D. S., Denison, C., & Gygi, S. P. (2005). Weighing in on ubiquitin: The expanding role of mass‐spectrometry‐based proteomics. Nature Cell Biology, 7, 750–757.
Hendriks, I. A., & Vertegaal, A. C. O. (2016). A comprehensive compilation of SUMO proteomics. Nature Reviews Molecular Cell Biology, 17, 581–595.
Cesaro, L., & Pinna, L. A. (2020). Prevalence and significance of the commonest phosphorylated motifs in the human proteome: A global analysis. Cellular and Molecular Life Sciences, 77, 5281–5298.
Collet, J.‐F., Stroobant, V., Pirard, M., Delpierre, G., & Van Schaftingen, E. (1998). A new class of phosphotransferases phosphorylated on an aspartate residue in an amino‐terminal DXDX(T/V). motif. Journal of Biological Chemistry, 273, 14107–14112.
Fuhrmann, J., Schmidt, A., Spiess, S., Lehner, A., Turgay, K., Mechtler, K., Charpentier, E., & Clausen, T. (2009). McsB is a protein arginine kinase that phosphorylates and inhibits the heat‐shock regulator CtsR. Science, 324, 1323–1327.
Sun, F., Ding, Y., Ji, Q., Liang, Z., Deng, X., Wong, C. C. L., Yi, C., Zhang, L., Xie, S., Alvarez, S., Hicks, L. M., Luo, C., Jiang, H., Lan, L., & He, C. (2012). Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 109, 15461–15466.
Fuhs, S. R., & Hunter, T. (2017). pHisphorylation: The emergence of histidine phosphorylation as a reversible regulatory modification. Current Opinion in Cell Biology, 45, 8–16.
Leijten, N. M., Heck, A. J. R., & Lemeer, S. (2022). Histidine phosphorylation in human cells; a needle or phantom in the haystack? Nature Methods, 19, 827–828.
DeKroon, R. M., Robinette, J. B., Osorio, C., Jeong, J. S. Y., Hamlett, E., Mocanu, M., & Alzate, O. (2012). Analysis of protein posttranslational modifications using DIGE‐based proteomics. Methods in Molecular Biology, 854, 129–143.
Witze, E. S., Old, W. M., Resing, K. A., & Ahn, N. G. (2007). Mapping protein post‐translational modifications with mass spectrometry. Nature Methods, 4, 798–806.
Ge, Y., Rybakova, I. N., Xu, Q., & Moss, R. L. (2009). Top‐down high‐resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state. Proceedings of the National Academy of Sciences of the United States of America, 106, 12658–12663.
Siuti, N., & Kelleher, N. L. (2007). Decoding protein modifications using top‐down mass spectrometry. Nature Methods, 4, 817–821.
Borchers, C. H., Thapar, R., Petrotchenko, E. V., Torres, M. P., Speir, J. P., Easterling, M., Dominski, Z., & Marzluff, W. F. (2006). Combined top‐down and bottom‐up proteomics identifies a phosphorylation site in stem–loop‐binding proteins that contributes to high‐affinity RNA binding. Proceedings of the National Academy of Sciences of the United States of America, 103, 3094–3099.
Wu, C., Tran, J. C., Zamdborg, L., Durbin, K. R., Li, M., Ahlf, D. R., Early, B. P., Thomas, P. M., Sweedler, J. V., & Kelleher, N. L. (2012). A protease for 'middle‐down' proteomics. Nature Methods, 9, 822–824.
Cristobal, A., Marino, F., Post, H., Van Den Toorn, H. W. P., Mohammed, S., & Heck, A. J. R. (2017). Toward an optimized workflow for middle‐down proteomics. Analytical Chemistry, 89, 3318–3325.
Hunter, T. (2007). The age of crosstalk: Phosphorylation, ubiquitination, and beyond. Molecular Cell, 28, 730–738.
Van Der Laarse, S. A. M., Leney, A. C., & Heck, A. J. R. (2018). Crosstalk between phosphorylation and O‐Glc NA cylation: Friend or foe. FEBS Journal, 285, 3152–3167.
Andersson, L., & Porath, J. (1986). Isolation of phosphoproteins by immobilized metal (Fe3+). affinity chromatography. Analytical Biochemistry, 154, 250–254.
Stensballe, A., Andersen, S., & Jensen, O. N. (2001). Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III). affinity chromatography with off‐line mass spectrometry analysis. Proteomics, 1, 207–222.
Pinkse, M. W. H., Uitto, P. M., Hilhorst, M. J., Ooms, B., & Heck, A. J. R. (2004). Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D‐NanoLC‐ESI‐MS/MS and titanium oxide precolumns. Analytical Chemistry, 76, 3935–3943.
Beausoleil, S. A., Jedrychowski, M., Schwartz, D., Elias, J. E., Villén, J., Li, J., Cohn, M. A., Cantley, L. C., & Gygi, S. P. (2004). Large‐scale characterization of HeLa cell nuclear phosphoproteins. Proceedings of the National Academy of Sciences of the United States of America, 101, 12130–12135.
Rush, J., Moritz, A., Lee, K. A., Guo, A., Goss, V. L., Spek, E. J., Zhang, H., Zha, X.‐M., Polakiewicz, R. D., & Comb, M. J. (2005). Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nature Biotechnology, 23, 94–101.
Stokes, M. P., Farnsworth, C. L., Moritz, A., Silva, J. C., Jia, X., Lee, K. A., Guo, A., Polakiewicz, R. D., & Comb, M. J. (2012). PTMScan direct: Identification and quantification of peptides from critical signaling proteins by immunoaffinity enrichment coupled with LC‐MS/MS. Molecular & Cellular Proteomics, 11, 187–201.
Shou, W., Verma, R., Annan, R. S., Huddleston, M. J., Chen, S. L., Carr, S. A., & Deshaies, R. J. (2002). Mapping phosphorylation sites in proteins by mass spectrometry, in Methods in Enzymology, pp 279–296. Academic Press.
Busman, M., Schey, K. L., Oatis, J. E., & Knapp, D. R. (1996). Identification of phosphorylation sites in phosphopeptides by positive and negative mode electrospray ionization‐tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 7, 243–249.
Louris, J. N., Cooks, R. G., Syka, J. E. P., Kelley, P. E., Stafford, G. C., & Todd, J. F. J. (1987). Instrumentation, applications, and energy deposition in quadrupole ion‐trap tandem mass spectrometry. Analytical Chemistry, 59, 1677–1685.
Nemeth‐Cawley, J. F., & Rouse, J. C. (2002). Identification and sequencing analysis of intact proteins via collision‐induced dissociation and quadrupole time‐of‐flight mass spectrometry. Journal of Mass Spectrometry, 37, 270–282.
Olsen, J. V., Macek, B., Lange, O., Makarov, A., Horning, S., & Mann, M. (2007). Higher‐energy C‐trap dissociation for peptide modification analysis. Nature Methods, 4, 709–712.
Jedrychowski, M. P., Huttlin, E. L., Haas, W., Sowa, M. E., Rad, R., & Gygi, S. P. (2011). Evaluation of HCD‐ and CID‐type fragmentation within their respective detection platforms for murine phosphoproteomics. Molecular & Cellular Proteomics, 10, M111.009910.
Degnore, J. P., & Qin, J. (1998). Fragmentation of phosphopeptides in an ion trap mass spectrometer. Journal of the American Society for Mass Spectrometry, 9, 1175–1188.
Sleno, L., & Volmer, D. A. (2004). Ion activation methods for tandem mass spectrometry. Journal of Mass Spectrometry, 39, 1091–1112.
Lehmann, W. D., Krüger, R., Salek, M., Hung, C.‐W., Wolschin, F., & Weckwerth, W. (2007). Neutral loss‐based phosphopeptide recognition:  A collection of caveats. Journal of Proteome Research, 6, 2866–2873.
Syka, J. E. P., Coon, J. J., Schroeder, M. J., Shabanowitz, J., & Hunt, D. F. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 101, 9528–9533.
Mechref, Y. (2012). Use of CID/ETD mass spectrometry to analyze glycopeptides. Current Protocols in Protein Science, 12, 12.11.1–12.11.11.
Zubarev, R. A., Kelleher, N. L., & Mclafferty, F. W. (1998). Electron capture dissociation of multiply charged protein cations. A nonergodic process. Journal of the American Chemical Society, 120, 3265–3266.
Hart‐Smith, G. (2014). A review of electron‐capture and electron‐transfer dissociation tandem mass spectrometry in polymer chemistry. Analytica Chimica Acta, 808, 44–55.
Molina, H., Matthiesen, R., Kandasamy, K., & Pandey, A. (2008). Comprehensive comparison of collision induced dissociation and electron transfer dissociation. Analytical Chemistry, 80, 4825–4835.
Hansen, T. A., Sylvester, M., Jensen, O. N., & Kjeldsen, F. (2012). Automated and high confidence protein phosphorylation site localization using complementary collision‐activated dissociation and electron transfer dissociation tandem mass spectrometry. Analytical Chemistry, 84, 9694–9699.
Vandenbogaert, M., Hourdel, V., Jardin‐Mathé, O., Bigeard, J., Bonhomme, L., Legros, V., Hirt, H., Schwikowski, B., & Pflieger, D. (2012). Automated phosphopeptide identification using multiple MS/MS fragmentation modes. Journal of Proteome Research, 11, 5695–5703.
Stahl, D. C., Swiderek, K. M., Davis, M. T., & Lee, T. D. (1996). Data‐controlled automation of liquid chromatography/tandem mass spectrometry analysis of peptide mixtures. Journal of the American Society for Mass Spectrometry, 7, 532–540.
Davis, M. T., Spahr, C. S., Mcginley, M. D., Robinson, J. H., Bures, E. J., Beierle, J., Mort, J., Yu, W., Luethy, R., & Patterson, S. D. (2001). Towards defining the urinary proteome using liquid chromatography‐tandem mass spectrometry II.Limitations of complex mixture analyses. II. Limitations of complex mixture analyses. Proteomics, 1, 108–117.
Kohli, B. M., Eng, J. K., Nitsch, R. M., & Konietzko, U. (2005). An alternative sampling algorithm for use in liquid chromatography/tandem mass spectrometry experiments. Rapid Communications in Mass Spectrometry, 19, 589–596.
Eng, J. K., Mccormack, A. L., & Yates, J. R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry, 5, 976–989.
Craig, R., & Beavis, R. C. (2004). TANDEM: Matching proteins with tandem mass spectra. Bioinformatics, 20, 1466–1467.
Tabb, D. L., Fernando, C. G., & Chambers, M. C. (2007). MyriMatch: Highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. Journal of Proteome Research, 6, 654–661.
Cox, J. R., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., & Mann, M. (2011). Andromeda: A peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research, 10, 1794–1805.
Bern, M., Kil, Y. J., & Becker, C. (2012). Byonic: Advanced peptide and protein identification software. CP in Bioinformatics, 13, 13.20.1–13.20.14.
Kim, S., & Pevzner, P. A. (2014). MS‐GF+ makes progress towards a universal database search tool for proteomics. Nature Communications, 5, 5277.
Perkins, D. N., Pappin, D. J. C., Creasy, D. M., & Cottrell, J. S. (1999). Probability‐based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20, 3551–3567.
Eng, J. K., Searle, B. C., Clauser, K. R., & Tabb, D. L. (2011). A face in the crowd: Recognizing peptides through database search. Molecular & Cellular Proteomics, R111.009522, 10, R111.009522.
Yates, J. R. 3rd, Eng, J. K., McCormack, A. L., & Schieltz, D. (1995). Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Analytical Chemistry, 67, 1426–1436.
Venable, J. D., Dong, M.‐Q., Wohlschlegel, J., Dillin, A., & Yates, J. R. (2004). Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nature Methods, 1, 39–45.
Gillet, L. C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner, R., & Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: A new concept for consistent and accurate proteome analysis. Molecular & Cellular Proteomics, 11, O111.016717.
Ting, Y. S., Egertson, J. D., Payne, S. H., Kim, S., Maclean, B., Käll, L., Aebersold, R., Smith, R. D., Noble, W. S., & Maccoss, M. J. (2015). Peptide‐centric proteome analysis: An alternative strategy for the analysis of tandem mass spectrometry data. Molecular & Cellular Proteomics, 14, 2301–2307.
Tsou, C.‐C., Avtonomov, D., Larsen, B., Tucholska, M., Choi, H., Gingras, A.‐C., & Nesvizhskii, A. I. (2015). DIA‐Umpire: Comprehensive computational framework for data‐independent acquisition proteomics. Nature Methods, 12, 258–564. 7 p following 258.
Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S., & Coon, J. J. (2012). Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Molecular & Cellular Proteomics, 11, 1475–1488.
Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 1912–1934.
Schweiger, R., & Linial, M. (2010). Cooperativity within proximal phosphorylation sites is revealed from large‐scale proteomics data. Biology Direct, 5, 6.
Kalous, J., Jansová, D., & Susor, A. (2020). Role of cyclin‐dependent kinase 1 in translational regulation in the M‐Phase. Cells, 9, 1568.
Mueller, P. R., Coleman, T. R., Kumagai, A., & Dunphy, W. G. (1995). Myt1: A membrane‐associated inhibitory kinase that phosphorylates Cdc2 on both threonine‐14 and tyrosine‐15. Science, 270, 86–90.
Lagory, E. L., Sitailo, L. A., & Denning, M. F. (2010). The protein kinase Cδ catalytic fragment is critical for maintenance of the G2/M DNA damage checkpoint. Journal of Biological Chemistry, 285, 1879–1887.
Szmyd, R., Niska‐Blakie, J., Diril, M. K., Renck Nunes, P., Tzelepis, K., Lacroix, A., Van Hul, N., Deng, L.‐W., Matos, J., Dreesen, O., Bisteau, X., & Kaldis, P. (2019). Premature activation of Cdk1 leads to mitotic events in S phase and embryonic lethality. Oncogene, 38, 998–1018.
Palou, G., Palou, R., Zeng, F., Vashisht, A. A., Wohlschlegel, J. A., & Quintana, D. G. (2015). Three different pathways prevent chromosome segregation in the presence of DNA damage or replication stress in budding yeast. PLOS Genetics, 11, e1005468.
Gnad, F., De Godoy, L. M. F., Cox, J., Neuhauser, N., Ren, S., Olsen, J. V., & Mann, M. (2009). High‐accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics, 9, 4642–4652.
Mazhar, S., Leonard, D., Sosa, A., Schlatzer, D., Thomas, D., & Narla, G. (2020). Challenges and reinterpretation of antibody‐based research on phosphorylation of Tyr307 on PP2Ac. Cell reports, 30, 3164–3170.e3.e3.
Hornbeck, P. V., Zhang, B., Murray, B., Kornhauser, J. M., Latham, V., & Skrzypek, E. (2015). PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Research, 43, D512–D520.
Keshishian, H., McDonald, E. R. 3rd, Mundt, F., Melanson, R., Krug, K., Porter, D. A., Wallace, L., Forestier, D., Rabasha, B., Marlow, S. E., Jane‐Valbuena, J., Todres, E., Specht, H., Robinson, M. L., Jean Beltran, P. M., Babur, O., Olive, M. E., Golji, J., Kuhn, E., & Carr, S. A. (2021). A highly multiplexed quantitative phosphosite assay for biology and preclinical studies. Molecular Systems Biology, 17, e10156.
Searle, B. C., Chien, A., Koller, A., Hawke, D., Herren, A. W., Kim Kim, J., Lee, K. A., Leib, R. D., Nelson, A. J., Patel, P., Ren, J. M., Stemmer, P. M., Zhu, Y., Neely, B. A., & Patel, B. (2023). A multipathway phosphopeptide standard for rapid phosphoproteomics assay development. Molecular & Cellular Proteomics, 22, 100639.
Barber, K. W., Muir, P., Szeligowski, R. V., Rogulina, S., Gerstein, M., Sampson, J. R., Isaacs, F. J., & Rinehart, J. (2018). Encoding human serine phosphopeptides in bacteria for proteome‐wide identification of phosphorylation‐dependent interactions. Nature Biotechnology, 36, 638–644.
Gassaway, B. M., Li, J., Rad, R., Mintseris, J., Mohler, K., Levy, T., Aguiar, M., Beausoleil, S. A., Paulo, J. A., Rinehart, J., Huttlin, E. L., & Gygi, S. P. (2022). A multi‐purpose, regenerable, proteome‐scale, human phosphoserine resource for phosphoproteomics. Nature Methods, 1371–1375.
Beausoleil, S. A., Villén, J., Gerber, S. A., Rush, J., & Gygi, S. P. (2006). A probability‐based approach for high‐throughput protein phosphorylation analysis and site localization. Nature Biotechnology, 24, 1285–1292.
Savitski, M. M., Lemeer, S., Boesche, M., Lang, M., Mathieson, T., Bantscheff, M., & Kuster, B. (2011). Confident phosphorylation site localization using the Mascot Delta Score. Molecular & Cellular Proteomics, 10, M110.003830.
Baker, P. R., Trinidad, J. C., & Chalkley, R. J. (2011). Modification site localization scoring integrated into a search engine. Molecular & Cellular Proteomics, M111.008078, 10, M111.008078.
Clauser, K. R., Baker, P., & Burlingame, A. L. (1999). Role of accurate mass measurement (±10 ppm). in protein identification strategies employing MS or MS/MS and database searching. Analytical Chemistry, 71, 2871–2882.
Chalkley, R. J., Baker, P. R., Huang, L., Hansen, K. C., Allen, N. P., Rexach, M., & Burlingame, A. L. (2005). Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time‐of‐flight mass spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets. Molecular & Cellular Proteomics, 4, 1194–1204.
Lawrence, R. T., Searle, B. C., Llovet, A., & Villén, J. (2016). Plug‐and‐play analysis of the human phosphoproteome by targeted high‐resolution mass spectrometry. Nature Methods, 13, 431–434.
Chalkley, R. J., & Clauser, K. R. (2012). Modification site localization scoring: Strategies and performance. Molecular & Cellular Proteomics, 11, 3–14.
Lee, D. C. H., Jones, A. R., & Hubbard, S. J. (2015). Computational phosphoproteomics: From identification to localization. Proteomics, 15, 950–963.
Xu, X., Sarikas, A., Dias‐Santagata, D. C., Dolios, G., Lafontant, P. J., Tsai, S.‐C., Zhu, W., Nakajima, H., Nakajima, H. O., Field, L. J., Wang, R., & Pan, Z.‐Q. (2008). The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin‐dependent degradation. Molecular Cell, 30, 403–414.
Searle, B. C., Lawrence, R. T., Maccoss, M. J., & Ville?N, J. (2019). Thesaurus: Quantifying phosphopeptide positional isomers. Nature Methods, 16, 703–706.
Wolf‐Yadlin, A., Hautaniemi, S., Lauffenburger, D. A., & White, F. M. (2007). Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 5860–5865.
Lim, M. Y., Paulo, J. A., & Gygi, S. P. (2019). Evaluating false transfer rates from the match‐between‐runs algorithm with a two‐proteome model. Journal of Proteome Research, 18, 4020–4026.
Phanstiel, D. H., Brumbaugh, J., Wenger, C. D., Tian, S., Probasco, M. D., Bailey, D. J., Swaney, D. L., Tervo, M. A., Bolin, J. M., Ruotti, V., Stewart, R., Thomson, J. A., & Coon, J. J. (2011). Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nature Methods, 8, 821–827.
Albuquerque, C. P., Smolka, M. B., Payne, S. H., Bafna, V., Eng, J., & Zhou, H. (2008). A multidimensional chromatography technology for in‐depth phosphoproteome analysis. Molecular & Cellular Proteomics, 7, 1389–1396.
Tanner, S., Shu, H., Frank, A., Wang, L.‐C., Zandi, E., Mumby, M., Pevzner, P. A., & Bafna, V. (2005). InsPecT:  Identification of posttranslationally modified peptides from tandem mass spectra. Analytical Chemistry, 77, 4626–4639.
Taus, T., Köcher, T., Pichler, P., Paschke, C., Schmidt, A., Henrich, C., & Mechtler, K. (2011). Universal and confident phosphorylation site localization using phosphoRS. Journal of Proteome Research, 10, 5354–5362.
Bailey, C. M., Sweet, S. M. M., Cunningham, D. L., Zeller, M., Heath, J. K., & Cooper, H. J. (2009). SLoMo: Automated site localization of modifications from ETD/ECD mass spectra. Journal of Proteome Research, 8, 1965–1971.
Maclean, D., Burrell, M. A., Studholme, D. J., & Jones, A. M. (2008). PhosCalc: A tool for evaluating the sites of peptide phosphorylation from mass spectrometer data. BMC Research Notes, 1, 30.
Ulintz, P. J., Yocum, A. K., Bodenmiller, B., Aebersold, R., Andrews, P. C., & Nesvizhskii, A. I. (2009). Comparison of MS 2 ‐Only, MSA, and MS 2 /MS 3 methodologies for phosphopeptide identification. Journal of Proteome Research, 8, 887–899.
Olsen, J. V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., & Mann, M. (2006). Global, in vivo, and site‐specific phosphorylation dynamics in signaling networks. Cell, 127, 635–648.
Fermin, D., Walmsley, S. J., Gingras, A.‐C., Choi, H., & Nesvizhskii, A. I. (2013). LuciPHOr: Algorithm for phosphorylation site localization with false localization rate estimation using modified target‐decoy approach. Molecular & Cellular Proteomics, 12, 3409–3419.
Shteynberg, D. D., Deutsch, E. W., Campbell, D. S., Hoopmann, M. R., Kusebauch, U., Lee, D., Mendoza, L., Midha, M. K., Sun, Z., Whetton, A. D., & Moritz, R. L. (2019). PTMProphet: Fast and accurate mass modification localization for the trans‐proteomic pipeline. Journal of Proteome Research, 18, 4262–4272.
An, Z., Zhai, L., Ying, W., Qian, X., Gong, F., Tan, M., & Fu, Y. (2019). PTMiner: Localization and quality control of protein modifications detected in an open search and its application to comprehensive post‐translational modification characterization in human proteome*. Molecular & Cellular Proteomics, 18, 391–405.
Yang, H., Chi, H., Zhou, W.‐J., Zeng, W.‐F., Liu, C., Wang, R.‐M., Wang, Z.‐W., Niu, X.‐N., Chen, Z.‐L., & He, S.‐M. (2018). pSite: Amino acid confidence evaluation for quality control of de novo peptide sequencing and modification site localization. Journal of Proteome Research, 17, 119–128.
Searle, B. C., Dasari, S., Turner, M., Reddy, A. P., Choi, D., Wilmarth, P. A., Mccormack, A. L., David, L. L., & Nagalla, S. R. (2004). High‐throughput identification of proteins and unanticipated sequence modifications using a mass‐based alignment algorithm for MS/MS de novo sequencing results. Analytical Chemistry, 76, 2220–2230.
Han, Y., Ma, B., & Zhang, K. (2005). SPIDER: Software for protein identification from sequence tags with de novo sequencing error. Journal of Bioinformatics and Computational Biology, 3, 697–716.
Suni, V., Imanishi, S. Y., Maiolica, A., Aebersold, R., & Corthals, G. L. (2015). Confident site localization using a simulated phosphopeptide spectral library. Journal of Proteome Research, 14, 2348–2359.
Hu, Y., Li, Y., & Lam, H. (2011). A semi‐empirical approach for predicting unobserved peptide MS/MS spectra from spectral libraries. Proteomics, 11, 4702–4711.
Hu, Y., & Lam, H. (2013). Expanding tandem mass spectral libraries of phosphorylated peptides: Advances and applications. Journal of Proteome Research, 12, 5971–5977.
Suni, V., Suomi, T., Tsubosaka, T., Imanishi, S. Y., Elo, L. L., & Corthals, G. L. (2018). SimPhospho: A software tool enabling confident phosphosite assignment. Bioinformatics, 34, 2690–2692.
Takai, A., Tsubosaka, T., Hirano, Y., Hayakawa, N., Tani, F., Haapaniemi, P., Suni, V., & Imanishi, S. Y. (2019). Optimization of TripleTOF spectral simulation and library searching for confident localization of phosphorylation sites. PLoS ONE, 14, e0225885.
Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K., King, N., Stein, S. E., & Aebersold, R. (2007). Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics, 7, 655–667.
Zong, Y., Wang, Y., Yang, Y., Zhao, D., Wang, X., Shen, C., & Qiao, L. (2023). DeepFLR facilitates false localization rate control in phosphoproteomics. Nature Communications, 14, 2269.
Pino, L. K., Just, S. C., Maccoss, M. J., & Searle, B. C. (2020). Acquiring and analyzing data independent acquisition proteomics experiments without spectrum libraries. Molecular & Cellular Proteomics, 1088–1103.
Peckner, R., Myers, S. A., Jacome, A. S. V., Egertson, J. D., Abelin, J. G., Maccoss, M. J., Carr, S. A., & Jaffe, J. D. (2018). Specter: Linear deconvolution for targeted analysis of data‐independent acquisition mass spectrometry proteomics. Nature Methods, 15, 371–378.
Meyer, J. G., Mukkamalla, S., Steen, H., Nesvizhskii, A. I., Gibson, B. W., & Schilling, B. (2017). PIQED: Automated identification and quantification of protein modifications from DIA‐MS data. Nature Methods, 14, 646–647.
Eng, J. K., Jahan, T. A., & Hoopmann, M. R. (2013). Comet: An open‐source MS / MS sequence database search tool. Proteomics, 13, 22–24.
Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T., Lam, H., Tasman, N., Sun, Z., Nilsson, E., Pratt, B., Prazen, B., Eng, J. K., Martin, D. B., Nesvizhskii, A. I., & Aebersold, R. (2010). A guided tour of the trans‐proteomic pipeline. Proteomics, 10, 1150–1159.
Rosenberger, G., Liu, Y., Röst, H. L., Ludwig, C., Buil, A., Bensimon, A., Soste, M., Spector, T. D., Dermitzakis, E. T., Collins, B. C., Malmström, L., & Aebersold, R. (2017). Inference and quantification of peptidoforms in large sample cohorts by SWATH‐MS. Nature Biotechnology, 35, 781–788.
Röst, H. L., Rosenberger, G., Navarro, P., Gillet, L., Miladinovic, S. M., Schubert, O. T., Wolski, W., Collins, B. C., Malmström, J., Malmström, L., & Aebersold, R. (2014). OpenSWATH enables automated, targeted analysis of data‐independent acquisition MS data. Nature Biotechnology, 32, 219–223.
Searle, B. C., Pino, L. K., Egertson, J. D., Ting, Y. S., Lawrence, R. T., Maclean, B. X., Ville?N, J., & Maccoss, M. J. (2018). Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nature Communications, 9, 5128.
Bekker‐Jensen, D. B., Bernhardt, O. M., Hogrebe, A., Martinez‐Val, A., Verbeke, L., Gandhi, T., Kelstrup, C. D., Reiter, L., & Olsen, J. V. (2020). Rapid and site‐specific deep phosphoproteome profiling by data‐independent acquisition without the need for spectral libraries. Nature Communications, 11, 787.
Martinez‐Val, A., Bekker‐Jensen, D. B., Hogrebe, A., & Olsen, J. V. (2021). Data processing and analysis for DIA‐based phosphoproteomics using spectronaut. Methods in Molecular Biology, 2361, 95–107.
Potel, C. M., Lemeer, S., & Heck, A. J. R. (2019). Phosphopeptide fragmentation and site localization by mass spectrometry: An update. Analytical Chemistry, 91, 126–141.
Elias, J. E., & Gygi, S. P. (2007). Target‐decoy search strategy for increased confidence in large‐scale protein identifications by mass spectrometry. Nature Methods, 4, 207–214.
Käll, L., Canterbury, J. D., Weston, J., Noble, W. S., & Maccoss, M. J. (2007). Semi‐supervised learning for peptide identification from shotgun proteomics datasets. Nature Methods, 4, 923–925.
Tabb, D. L. (2008). What's driving false discovery rates? Journal of Proteome Research, 7, 45–46.
Ramsbottom, K. A., Prakash, A., Riverol, Y. P., Camacho, O. M., Martin, M.‐J., Vizcaíno, J. A., Deutsch, E. W., & Jones, A. R. (2022). Method for independent estimation of the false localization rate for phosphoproteomics. Journal of Proteome Research, 21, 1603–1615.
Keller, A., Nesvizhskii, A. I., Kolker, E., & Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical Chemistry, 74, 5383–5392.
Locard‐Paulet, M., Bouyssié, D., Froment, C., Burlet‐Schiltz, O., & Jensen, L. J. (2020). Comparing 22 popular phosphoproteomics pipelines for peptide identification and site localization. Journal of Proteome Research, 19, 1338–1345.
Palumbo, A. M., & Reid, G. E. (2008). Evaluation of gas‐phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation‐MS/MS and MS3. Analytical Chemistry, 80, 9735–9747.
Boersema, P. J., Mohammed, S., & Heck, A. J. R. (2009). Phosphopeptide fragmentation and analysis by mass spectrometry. Journal of Mass Spectrometry, 44, 861–878.
Palumbo, A. M., Smith, S. A., Kalcic, C. L., Dantus, M., Stemmer, P. M., & Reid, G. E. (2011). Tandem mass spectrometry strategies for phosphoproteome analysis. Mass Spectrometry Reviews, 30, 600–625.
Penkert, M., Yates, L. M., Schümann, M., Perlman, D., Fiedler, D., & Krause, E. (2017). Unambiguous identification of serine and threonine pyrophosphorylation using neutral‐loss‐triggered electron‐transfer/higher‐energy collision dissociation. Analytical Chemistry, 89, 3672–3680.
Everley, R. A., Huttlin, E. L., Erickson, A. R., Beausoleil, S. A., & Gygi, S. P. (2017). Neutral loss is a very common occurrence in phosphotyrosine‐containing peptides labeled with isobaric tags. Journal of Proteome Research, 16, 1069–1076.
Palumbo, A. M., Tepe, J. J., & Reid, G. E. (2008). Mechanistic insights into the multistage gas‐phase fragmentation behavior of phosphoserine‐ and phosphothreonine‐containing peptides. Journal of Proteome Research, 7, 771–779.
Houel, S., Abernathy, R., Renganathan, K., Meyer‐Arendt, K., Ahn, N. G., & Old, W. M. (2010). Quantifying the impact of chimera MS/MS spectra on peptide identification in large‐scale proteomics studies. Journal of Proteome Research, 9, 4152–4160.
Aguiar, M., Haas, W., Beausoleil, S. A., Rush, J., & Gygi, S. P. (2010). Gas‐phase rearrangements do not affect site localization reliability in phosphoproteomics data sets. Journal of Proteome Research, 9, 3103–3107.
Jones, A. R., Eisenacher, M., Mayer, G., Kohlbacher, O., Siepen, J., Hubbard, S. J., Selley, J. N., Searle, B. C., Shofstahl, J., Seymour, S. L., Julian, R., Binz, P.‐A., Deutsch, E. W., Hermjakob, H., Reisinger, F., Griss, J., Vizcaíno, J. A., Chambers, M., Pizarro, A., & Creasy, D. (2012). The mzIdentML data standard for mass spectrometry‐based proteomics results. Molecular & Cellular Proteomics, 11, M111_014381.
Seymour, S. L., Farrah, T., Binz, P.‐A., Chalkley, R. J., Cottrell, J. S., Searle, B. C., Tabb, D. L., Vizcaíno, J. A., Prieto, G., Uszkoreit, J., Eisenacher, M., Martínez‐Bartolomé, S., Ghali, F., & Jones, A. R. (2014). A standardized framing for reporting protein identifications in mzIdentML 1.2.2. Proteomics, 14, 2389–2399.
معلومات مُعتمدة: R35 GM150723 United States GM NIGMS NIH HHS; R01GM133981 United States GM NIGMS NIH HHS; R21CA267394 United States NH NIH HHS; R35GM150723 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: bioinformatics; mass spectrometry; phosphoproteomics
المشرفين على المادة: 0 (Phosphopeptides)
تواريخ الأحداث: Date Created: 20231028 Date Completed: 20240418 Latest Revision: 20240617
رمز التحديث: 20240617
DOI: 10.1002/pmic.202300088
PMID: 37897210
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-9861
DOI:10.1002/pmic.202300088