دورية أكاديمية

Mathematical modeling of radiotherapy: impact of model selection on estimating minimum radiation dose for tumor control.

التفاصيل البيبلوغرافية
العنوان: Mathematical modeling of radiotherapy: impact of model selection on estimating minimum radiation dose for tumor control.
المؤلفون: Kutuva AR; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States., Caudell JJ; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States., Yamoah K; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States., Enderling H; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States., Zahid MU; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
المصدر: Frontiers in oncology [Front Oncol] 2023 Oct 09; Vol. 13, pp. 1130966. Date of Electronic Publication: 2023 Oct 09 (Print Publication: 2023).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation] Country of Publication: Switzerland NLM ID: 101568867 Publication Model: eCollection Cited Medium: Print ISSN: 2234-943X (Print) Linking ISSN: 2234943X NLM ISO Abbreviation: Front Oncol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: [Lausanne : Frontiers Research Foundation]
مستخلص: Introduction: Radiation therapy (RT) is one of the most common anticancer therapies. Yet, current radiation oncology practice does not adapt RT dose for individual patients, despite wide interpatient variability in radiosensitivity and accompanying treatment response. We have previously shown that mechanistic mathematical modeling of tumor volume dynamics can simulate volumetric response to RT for individual patients and estimation personalized RT dose for optimal tumor volume reduction. However, understanding the implications of the choice of the underlying RT response model is critical when calculating personalized RT dose.
Methods: In this study, we evaluate the mathematical implications and biological effects of 2 models of RT response on dose personalization: (1) cytotoxicity to cancer cells that lead to direct tumor volume reduction (DVR) and (2) radiation responses to the tumor microenvironment that lead to tumor carrying capacity reduction (CCR) and subsequent tumor shrinkage. Tumor growth was simulated as logistic growth with pre-treatment dynamics being described in the proliferation saturation index (PSI). The effect of RT was simulated according to each respective model for a standard schedule of fractionated RT with 2 Gy weekday fractions. Parameter sweeps were evaluated for the intrinsic tumor growth rate and the radiosensitivity parameter for both models to observe the qualitative impact of each model parameter. We then calculated the minimum RT dose required for locoregional tumor control (LRC) across all combinations of the full range of radiosensitvity and proliferation saturation values.
Results: Both models estimate that patients with higher radiosensitivity will require a lower RT dose to achieve LRC. However, the two models make opposite estimates on the impact of PSI on the minimum RT dose for LRC: the DVR model estimates that tumors with higher PSI values will require a higher RT dose to achieve LRC, while the CCR model estimates that higher PSI values will require a lower RT dose to achieve LRC.
Discussion: Ultimately, these results show the importance of understanding which model best describes tumor growth and treatment response in a particular setting, before using any such model to make estimates for personalized treatment recommendations.
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
(Copyright © 2023 Kutuva, Caudell, Yamoah, Enderling and Zahid.)
References: PLoS Comput Biol. 2022 Feb 4;18(2):e1009822. (PMID: 35120124)
Cell. 2014 Jan 30;156(3):603-616. (PMID: 24485463)
Head Neck. 2020 Sep 21;:. (PMID: 32964574)
Cancer. 2005 Sep 15;104(6):1129-37. (PMID: 16080176)
Br J Radiol. 2010 Jul;83(991):554-68. (PMID: 20603408)
Acta Oncol. 1992;31(2):237-42. (PMID: 1622640)
Med Phys. 2020 Aug;47(8):3710-3720. (PMID: 32385934)
Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):497-505. (PMID: 19735874)
Clin Oncol (R Coll Radiol). 2018 Nov;30(11):686-691. (PMID: 30195605)
Lancet Oncol. 2017 Feb;18(2):202-211. (PMID: 27993569)
Biophys J. 2003 Nov;85(5):2948-61. (PMID: 14581197)
Int J Radiat Oncol Biol Phys. 1995 Mar 30;31(5):1213-36. (PMID: 7713784)
Phys Med Biol. 2018 Dec 19;64(1):01TR01. (PMID: 30523903)
Bull Math Biol. 2004 Sep;66(5):1039-91. (PMID: 15294418)
Semin Oncol. 2019 Jun;46(3):210-218. (PMID: 31506196)
Per Med. 2012 Jul;9(5):547-557. (PMID: 23105945)
J Theor Biol. 2003 Nov 21;225(2):147-51. (PMID: 14575649)
Trends Cancer. 2019 Aug;5(8):467-474. (PMID: 31421904)
Int J Radiat Oncol Biol Phys. 1995 Mar 30;31(5):1141-64. (PMID: 7713779)
Cancer Res. 2016 Feb 1;76(3):535-47. (PMID: 26511632)
Proc Biol Sci. 2021 Mar 31;288(1947):20210229. (PMID: 33757357)
Semin Radiat Oncol. 2023 Jul;33(3):262-278. (PMID: 37331781)
Acta Oncol. 2011 May;50(4):518-27. (PMID: 21198416)
J Theor Biol. 2006 Jun 7;240(3):459-63. (PMID: 16324717)
Clin Cancer Res. 2012 Sep 15;18(18):5134-43. (PMID: 22832933)
Bull Math Biol. 2019 Oct;81(10):3722-3731. (PMID: 31338741)
Br J Radiol. 1985 Jun;58(690):515-28. (PMID: 4063711)
Radiat Oncol. 2015 Jul 31;10:159. (PMID: 26227259)
Front Oncol. 2020 May 05;10:563. (PMID: 32432035)
Nat Rev Cancer. 2008 Mar;8(3):227-34. (PMID: 18273038)
Int J Radiat Oncol Biol Phys. 1988 Jan;14(1):147-57. (PMID: 3335449)
Bull Math Biol. 2018 May;80(5):1195-1206. (PMID: 28681150)
Int J Radiat Biol. 1991 Jul-Aug;60(1-2):327-34. (PMID: 1677989)
Nat Rev Cancer. 2015 Dec;15(12):730-45. (PMID: 26597528)
Curr Pharm Des. 2002;8(19):1765-80. (PMID: 12171547)
PLoS One. 2019 Jan 18;14(1):e0210758. (PMID: 30657785)
Semin Radiat Oncol. 2008 Oct;18(4):234-9. (PMID: 18725109)
Trends Ecol Evol. 2007 Jan;22(1):42-7. (PMID: 17011070)
Cancers (Basel). 2021 Feb 15;13(4):. (PMID: 33672052)
Cancer Res. 2013 Apr 15;73(8):2407-11. (PMID: 23393201)
Oral Oncol. 2020 Apr;103:104473. (PMID: 32109841)
Science. 2005 Oct 14;310(5746):248-9. (PMID: 16224011)
PLoS Comput Biol. 2022 Mar 3;18(3):e1009844. (PMID: 35239640)
Neuro Oncol. 2023 Jun 2;25(6):1100-1112. (PMID: 36402744)
Nature. 2003 Jan 23;421(6921):321. (PMID: 12540881)
Nat Commun. 2019 Sep 2;10(1):3941. (PMID: 31477699)
Med Phys. 2018 Jul;45(7):3466-3474. (PMID: 29786861)
Phys Biol. 2019 Jun 19;16(4):041005. (PMID: 30991381)
Int J Radiat Oncol Biol Phys. 2009 Oct 1;75(2):489-96. (PMID: 19735873)
Br J Radiol. 1989 Aug;62(740):679-94. (PMID: 2670032)
Semin Radiat Oncol. 2015 Oct;25(4):305-12. (PMID: 26384278)
Semin Radiat Oncol. 2022 Oct;32(4):351-364. (PMID: 36202438)
Int J Radiat Biol. 2019 Oct;95(10):1421-1426. (PMID: 30831050)
Front Oncol. 2021 May 11;11:628155. (PMID: 34046339)
J Pers Med. 2021 Nov 01;11(11):. (PMID: 34834476)
Front Oncol. 2018 Jul 27;8:266. (PMID: 30101124)
Radiat Oncol. 2018 May 16;13(1):96. (PMID: 29769103)
Int J Radiat Oncol Biol Phys. 2021 Nov 1;111(3):693-704. (PMID: 34102299)
معلومات مُعتمدة: R21 CA263911 United States CA NCI NIH HHS; U01 CA244100 United States CA NCI NIH HHS
فهرسة مساهمة: Keywords: mathematical modeling; model comparison; oncology; personalized oncology; radiotherapy
تواريخ الأحداث: Date Created: 20231030 Latest Revision: 20240210
رمز التحديث: 20240210
مُعرف محوري في PubMed: PMC10600389
DOI: 10.3389/fonc.2023.1130966
PMID: 37901317
قاعدة البيانات: MEDLINE
الوصف
تدمد:2234-943X
DOI:10.3389/fonc.2023.1130966