دورية أكاديمية

Characterization of pulmonary arterial stiffness using cardiac MRI.

التفاصيل البيبلوغرافية
العنوان: Characterization of pulmonary arterial stiffness using cardiac MRI.
المؤلفون: Cain MT; Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA., Schäfer M; Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA. michal.schafer@cuanschutz.edu.; Heart Institute, Children's Hospital Colorado, University of Colorado, Denver, USA. michal.schafer@cuanschutz.edu., Park S; Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA., Barker AJ; Department of Radiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA., Vargas D; Department of Radiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA., Stenmark KR; Division of Pediatric Critical Care and Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA., Yu YA; Division of Pediatric Critical Care and Pulmonary Medicine, Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA., Bull TM; Department of Critical Care and Pulmonary Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA., Ivy DD; Heart Institute, Children's Hospital Colorado, University of Colorado, Denver, USA., Hoffman JRH; Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado - Denver | Anschutz Medical Campus, Aurora, CO, USA.
المصدر: The international journal of cardiovascular imaging [Int J Cardiovasc Imaging] 2024 Feb; Vol. 40 (2), pp. 425-439. Date of Electronic Publication: 2023 Oct 30.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 100969716 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1875-8312 (Electronic) Linking ISSN: 15695794 NLM ISO Abbreviation: Int J Cardiovasc Imaging Subsets: MEDLINE
أسماء مطبوعة: Publication: [New York] : Springer
Original Publication: Boston : Kluwer Academic Publishers, c2001-
مواضيع طبية MeSH: Vascular Stiffness* , Hypertension, Pulmonary*/diagnostic imaging, Humans ; Cardiac Catheterization/methods ; Predictive Value of Tests ; Pulmonary Artery ; Magnetic Resonance Imaging ; Ventricular Function, Right
مستخلص: Pulmonary arterial stiffness (PAS) is a pathologic hallmark of all types of pulmonary hypertension (PH). Cardiac MRI (CMR), a gold-standard imaging modality for the evaluation of pulmonary flow, biventricular morphology and function has been historically reserved for the longitudinal clinical follow-up, PH phenotyping purposes, right ventricular evaluation, and research purposes. Over the last two decades, numerous indices combining invasive catheterization and non-invasive CMR have been utilized to phenotype the character and severity of PAS in different types of PH and to assess its clinically prognostic potential with encouraging results. Many recent studies have demonstrated a strong role of CMR derived PAS markers in predicting long-term clinical outcomes and improving currently gold standard risk assessment provided by the REVEAL calculator. With the utilization of a machine learning strategies, strong diagnostic and prognostic performance of CMR reported in multicenter studies, and ability to detect PH at early stages, the non-invasive assessment of PAS is on verge of routine clinical utilization. In this review, we focus on appraising important CMR studies interrogating PAS over the last 20 years, describing the benefits and limitations of different PAS indices, and their pathophysiologic relevance to pulmonary vascular remodeling. We also discuss the role of CMR and PAS in clinical surveillance and phenotyping of PH, and the long-term future goal to utilize PAS as a biomarker to aid with more targeted therapeutic management.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Schäfer M, Myers C, Brown RD et al (2016) Pulmonary arterial stiffness: toward a New Paradigm in Pulmonary arterial Hypertension pathophysiology and Assessment. Curr Hypertens Rep 18.
Vonk-Noordegraaf A, Haddad F, Chin KM et al (2013) Right heart adaptation to pulmonary arterial Hypertension: physiology and pathobiology. J Am Coll Cardiol 62:D22–33. (PMID: 24355638)
Hunter KS, Lee P, Lanning CJ et al (2008) Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than PVR alone ine Pediatric patients with Pulmonary Hypertension with Pulmonary Hypertension. Am Heart J 155:166–174. (PMID: 18082509)
Lewis GD, Bossone E, Naeije R et al (2013) Pulmonary vascular hemodynamic response to exercise in cardiopulmonary Diseases. Circulation 128:1470–1479. (PMID: 24060943)
Muthurangu V, Taylor A, Andriantsimiavona R et al (2004) Novel method of quantifying Pulmonary Vascular Resistance by Use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance Flow. Circulation 110:826–834. (PMID: 15302793)
Schäfer M, Truong U, Browne P et al (2018) Measuring Flow hemodynamic indices and oxygen consumption in children with pulmonary Hypertension: a comparison of catheterization and phase-contrast MRI. Pediatr Cardiol 39:1268–1274.
Van Der Zwaan HB, Geleijnse ML, McGhie JS et al (2011) Right ventricular quantification in clinical practice: two-dimensional vs. three-dimensional echocardiography compared with cardiac magnetic resonance imaging. Eur J Echocardiogr 12:656–664. (PMID: 21810828)
Geva T (2014) MRI is the Preferred Method for evaluating right ventricular size and function in patients with congenital Heart Disease. Circ Cardiovasc Imaging 7:190. (PMID: 244495484006374)
Dyverfeldt P, Bissell M, Barker AJ et al (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17:72. (PMID: 262571414530492)
Schäfer M, Barker AJ, Kheyfets V et al (2017) Helicity and vorticity of pulmonary arterial Flow in patients with Pulmonary Hypertension: quantitative analysis of Flow formations. J Am Heart Assoc 6:e007010. (PMID: 292630345779020)
Kiely DG, Levin DL, Hassoun PM et al (2019) Statement on imaging and pulmonary Hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ 9.
Dawes TJW, Gandhi A, de Marvao A et al (2016) Pulmonary artery stiffness is independently Associated with Right Ventricular Mass and function: a cardiac MR Imaging Study. Radiology 280:398–404. (PMID: 26909648)
Sanz J, Kariisa M, Dellegrottaglie S et al (2009) Evaluation of pulmonary artery stiffness in pulmonary Hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2:286–295. (PMID: 19356573)
Swift AJ, Rajaram S, Condliffe R et al (2012) Pulmonary artery relative area change detects mild elevations in Pulmonary Vascular Resistance and predicts adverse outcome in Pulmonary Hypertension. Invest Radiol 47:571–577. (PMID: 22914228)
Swift AJ, Rajaram S, Hurdman J et al (2013) Noninvasive estimation of pa pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the aspire registry. JACC Cardiovasc Imaging 6:1036–1047. (PMID: 23769494)
Schäfer M, Wilson N, Ivy DD et al (2018) Noninvasive wave intensity analysis predicts functional worsening in children with pulmonary arterial Hypertension. Am J Physiol - Hear Circ Physiol 315:H968–H977.
Kang K-W, Chang H-J, Kim Y-J et al (2011) Cardiac magnetic resonance imaging-derived Pulmonary Artery Distensibility Index correlates with Pulmonary Artery stiffness and predicts functional capacity in patients with Pulmonary arterial Hypertension. Circ J 75:2244–2251. (PMID: 21757816)
Gan CTJ, Lankhaar JW, Westerhof N et al (2007) Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial Hypertension. Chest 132:1906–1912. (PMID: 17989161)
Reiter U, Kovacs G, Reiter C et al (2021) MR 4D flow-based mean pulmonary arterial pressure tracking in pulmonary Hypertension. Eur Radiol 31:1883–1893. (PMID: 32974687)
Kräuter C, Reiter U, Kovacs G et al (2022) Automated vortical blood flow-based estimation of mean pulmonary arterial pressure from 4D flow MRI. Magn Reson Imaging 88:132–141. (PMID: 35189283)
Kheyfets VO, Schafer M, Podgorski CA et al (2016) 4D magnetic resonance flow imaging for estimating pulmonary vascular resistance in pulmonary Hypertension. J Magn Reson Imaging 44:914–922. (PMID: 271734455331851)
Quail MA, Knight DS, Steeden JA et al (2015) Noninvasive pulmonary artery wave intensity analysis in pulmonary Hypertension. AJP Hear Circ Physiol 308:H1603–H1611.
Lewis RA, Johns CS, Cogliano M et al (2020) Identification of cardiac magnetic resonance imaging thresholds for risk stratification in pulmonary arterial Hypertension. Am J Respir Crit Care Med 201:458–466. (PMID: 316473107049935)
Humbert M, Kovacs G, Hoeper MM et al (2022) 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertensionDeveloped by the task force for the diagnosis and treatment of pulmonary Hypertension of the European Society of Cardiology (ESC) and the European respiratory society (ERS). Eur Heart J 43:3618–3731. (PMID: 36017548)
Cannon JE, Su L, Kiely DG et al (2016) Dynamic risk stratification of patient long-term outcome after pulmonary endarterectomy: results from the United Kingdom national cohort. Circulation 133:1761–1771. (PMID: 270524135860739)
Schölzel BE, Post MC, van de Bruaene A et al (2015) Prediction of hemodynamic improvement after pulmonary endarterectomy in chronic thromboembolic pulmonary Hypertension using non-invasive imaging. Int J Cardiovasc Imaging 31:143–150. (PMID: 25146554)
Mayer E, Jenkins D, Lindner J et al (2011) Surgical management and outcome of patients with chronic thromboembolic pulmonary Hypertension: results from an international prospective registry. J Thorac Cardiovasc Surg 141:702–710. (PMID: 21335128)
Rosenzweig EB, Abman SH, Adatia I et al (2019) Paediatric pulmonary arterial Hypertension: updates on definition, classification, diagnostics and management. Eur Respir J 53(1):1801916. (PMID: 305459786351335)
Swift AJ, Wild JM, Nagle SK et al (2014) Quantitative magnetic resonance imaging of pulmonary Hypertension: a practical approach to the current state of the art. J Thorac Imaging 29:68–79. (PMID: 245528824015452)
Backhaus SJ, Metschies G, Billing M et al (2021) Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking. J Cardiovasc Magn Reson 23:60. (PMID: 340011758127257)
Dorniak K, Heiberg E, Hellmann M et al (2016) Required temporal resolution for accurate thoracic aortic pulse wave velocity measurements by phase-contrast magnetic resonance imaging and comparison with clinical standard applanation tonometry. BMC Cardiovasc Disord 16:110. (PMID: 273871994937588)
Thenappan T, Prins KW, Pritzker MR et al (2016) The critical role of pulmonary arterial compliance in pulmonary Hypertension. Ann Am Thorac Soc 13:276–284. (PMID: 268486015461956)
Tan W, Madhavan K, Hunter KS et al (2014) Vascular stiffening in pulmonary Hypertension: cause or consequence? (2013 Grover Conference series). Pulm Circ 4:560–580. (PMID: 256105944278618)
Fisher MR, Forfia PR, Chamera E et al (2009) Accuracy of Doppler Echocardiography in the hemodynamic Assessment of Pulmonary Hypertension. Am J Respir Crit Care Med 179:615. (PMID: 191647002720125)
Fisher MR, Criner GJ, Fishman AP et al (2007) Estimating pulmonary artery pressures by echocardiography in patients with Emphysema. Eur Respir J 30:914–921. (PMID: 17652313)
Champion HC, Michelakis ED, Hassoun PM (2009) Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120:992–1007. (PMID: 19752350)
Thistlethwaite PA, Mo M, Madani MM et al (2002) Operative classification of thromboembolic Disease determines outcome after pulmonary endarterectomy. J Thorac Cardiovasc Surg 124:1203–1211. (PMID: 12447188)
Chesler N, Wang Z (2011) Pulmonary vascular wall stiffness: an important contributor to the increased right ventricular afterload with pulmonary Hypertension. Pulm Circ 1:212. (PMID: 220346073198648)
Swift AJ, Rajaram S, Condliffe R et al (2012) Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary Hypertension results from the ASPIRE registry. J Cardiovasc Magn Reson 14:1–10.
Stevens GR, Lala A, Sanz J et al (2009) Exercise performance in patients with pulmonary Hypertension linked to Cardiac magnetic resonance measures. J Hear Lung Transplant 28:899–905.
Stevens GR, Garcia-Alvarez A, Sahni S et al (2012) RV dysfunction in pulmonary Hypertension is independently related to pulmonary artery stiffness. JACC Cardiovasc Imaging 5:378–387. (PMID: 22498327)
Ray JC, Burger C, Mergo P et al (2019) Pulmonary arterial stiffness assessed by cardiovascular magnetic resonance imaging is a predictor of mild pulmonary arterial Hypertension. Int J Cardiovasc Imaging 35:1881–1892. (PMID: 29934885)
Johns CS, Kiely DG, Rajaram S et al (2019) Diagnosis of pulmonary Hypertension with cardiac MRI: derivation and validation of regression models. Radiology 290:61–68. (PMID: 30351254)
Swift AJ, Capener D, Johns C et al (2017) Magnetic Resonance Imaging in the prognostic evaluation of patients with pulmonary arterial Hypertension. Am J Respir Crit Care Med 196(2):228–239. (PMID: 283282375519970)
Truong U, Fonseca B, Dunning J et al (2013) Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial Hypertension. J Cardiovasc Magn Reson 15:81. (PMID: 240341443848825)
Friesen RM, Schäfer M, Dunbar Ivy D et al (2019) Proximal pulmonary vascular stiffness as a prognostic factor in children with pulmonary arterial Hypertension. Eur Heart J Cardiovasc Imaging 20:209–217. (PMID: 29788051)
Schäfer M, Ivy DD, Barker AJ et al (2016) Characterization of CMR-derived haemodynamic data in children with pulmonary arterial Hypertension. Eur Heart J Cardiovasc Imaging 18(4):424–431.
Schäfer M, Ivy DD, Abman SH et al (2019) Differences in pulmonary arterial flow hemodynamics between children and adults with pulmonary arterial Hypertension as assessed by 4D-flow CMR studies. Am J Physiol Circ Physiol 316:H1091–H1104.
Ploegstra M-J, Arjaans S, Zijlstra WMH et al (2015) Clinical worsening as Composite Study End Point in Pediatric Pulmonary arterial Hypertension. Chest 148:655–666. (PMID: 25741884)
Zijlstra WMH, Douwes JM, Rosenzweig EB et al (2014) Survival differences in pediatric pulmonary arterial Hypertension: clues to a better understanding of outcome and optimal treatment strategies. J Am Coll Cardiol 63:2159–2169. (PMID: 24681143)
Zhong L, Leng S, Alabed S et al (2023) Pulmonary artery strain predicts prognosis in pulmonary arterial Hypertension. JACC Cardiovasc Imaging.
Guala A, Teixidó-Tura G, Rodríguez-Palomares J et al (2019) Proximal aorta longitudinal strain predicts aortic root dilation rate and aortic events in Marfan Syndrome. Eur Heart J 40:2047–2055. (PMID: 30977783)
Bell V, Mitchell WA, Sigurdsson S et al (2014) Longitudinal and circumferential strain of the proximal aorta. J Am Heart Assoc 3:e001536. (PMID: 255231534338743)
Wentland AL, Grist TM, Wieben O (2014) Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc Diagn Ther 4:193–206. (PMID: 248344153996237)
Chirinos JA, Segers P, Hughes T, Townsend R (2019) Large-artery stiffness in Health and Disease: JACC State-of-the-art review. J Am Coll Cardiol 74:1237–1263. (PMID: 314666226719727)
Agoston-Coldea L, Lupu S, Mocan T (2018) Pulmonary artery stiffness by Cardiac magnetic resonance imaging predicts major adverse Cardiovascular events in patients with Chronic Obstructive Pulmonary Disease. Sci Rep 8:1–11.
Weir-Mccall JR, Struthers AD, Lipworth BJ, Houston JG (2015) The role of pulmonary arterial stiffness in COPD. Respir Med 109:1381–1390. (PMID: 260958594646836)
Oganesyan A, Hoffner-Heinike A, Barker AJ et al (2021) Abnormal pulmonary flow is associated with impaired right ventricular coupling in patients with COPD. Int J Cardiovasc Imaging 37:3039–3048. (PMID: 34021434)
Segers P, Swillens A, Taelman L, Vierendeels J (2014) Wave reflection leads to over- and underestimation of local wave speed by the PU- and QA-loop methods: theoretical basis and solution to the problem. Physiol Meas 35:847–861. (PMID: 24710904)
Segers P (2019) MRI-enabled noninvasive wave intensity analysis: an exciting tool for cardiovascular (patho)physiology research (in absence of local reflections). J Hypertens 37:287–289. (PMID: 30640871)
Davies JE, Whinnett ZI, Francis DP et al (2006) Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J Physiol Circ Physiol 290:H878–H885.
Schäfer M, Frank BS, Jacobsen R et al (2021) Patients with Fontan circulation have abnormal aortic wave propagation patterns: a wave intensity analysis study. Int J Cardiol 322:158–167. (PMID: 32853667)
Kopeć G, Moertl D, Jankowski P et al (2013) Pulmonary artery pulse wave velocity in idiopathic pulmonary arterial Hypertension. Can J Cardiol 29:683–690. (PMID: 23260799)
Ibrahim ESH, Shaffer JM, White RD (2011) Assessment of pulmonary artery stiffness using velocity-encoding magnetic resonance imaging: evaluation of techniques. Magn Reson Imaging 29:966–974. (PMID: 21641745)
Weir-McCall JR, Liu-Shiu-Cheong PS, Struthers AD et al (2018) Pulmonary arterial stiffening in COPD and its implications for right ventricular remodelling. Eur Radiol 28:3464–3472. (PMID: 294880846028842)
Schäfer M, Ivy DD, Nguyen K et al (2021) Metalloproteinases and their inhibitors are associated with pulmonary arterial stiffness and ventricular function in pediatric pulmonary Hypertension. Am J Physiol - Hear Circ Physiol 321:H242–H252.
Forouzan O, Warczytowa J, Wieben O et al (2015) Non-invasive measurement using cardiovascular magnetic resonance of changes in pulmonary artery stiffness with exercise. J Cardiovasc Magn Reson 17:109. (PMID: 266532894677443)
Forouzan O, Dinges E, Runo JR et al (2019) Exercise-induced changes in pulmonary artery stiffness in pulmonary Hypertension. Front Physiol 10:269. (PMID: 310011236454859)
Beaudry RI, Samuel TJ, Wang J et al (2018) Exercise cardiac magnetic resonance imaging: a feasibility study and meta-analysis. Am J Physiol - Regul Integr Comp Physiol 315:R638–R645. (PMID: 299494096230887)
Schäfer M, Frank BS, Ivy DD et al (2021) Short-term effects of inhaled nitric oxide on right ventricular Flow Hemodynamics by 4-Dimensional-Flow magnetic resonance imaging in Children with Pulmonary arterial Hypertension. J Am Heart Assoc 10:e020548. (PMID: 338216828174179)
Lau EMT, Abelson D, Dwyer N et al (2014) Assessment of ventriculo-arterial interaction in pulmonary arterial Hypertension using wave intensity analysis. Eur Respir J 43:1804–1807. (PMID: 24435004)
Feng J, Khir AW (2010) Determination of wave speed and wave separation in the arteries using diameter and velocity. J Biomech 43:455–462. (PMID: 19892359)
Biglino G, Steeden JA, Baker C et al (2012) A non-invasive clinical application of wave intensity analysis based on ultrahigh temporal resolution phase-contrast cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:1–9.
Parker KH (2009) An introduction to wave intensity analysis. Med Biol Eng Comput 47:175–188. (PMID: 19205773)
Su J, Manisty C, Parker KH et al (2017) Wave intensity analysis provides novel insights into pulmonary arterial Hypertension and chronic thromboembolic pulmonary Hypertension. J Am Heart Assoc 6:1–15.
Kreitner K-F, Wirth GM, Krummenauer F et al (2013) Noninvasive Assessment of Pulmonary Hemodynamics in patients with chronic thromboembolic pulmonary Hypertension by high temporal resolution phase-contrast MRI: correlation with simultaneous invasive pressure recordings. Circ Cardiovasc Imaging 6:722–729. (PMID: 23863980)
Su J, Hilberg O, Howard L et al (2016) A review of wave mechanics in the pulmonary artery with an emphasis on wave intensity analysis. Acta Physiol 218:239–249.
Hollander EH, Wang JJ, Dobson GM et al (2001) Negative wave reflections in pulmonary arteries. Am J Physiol Heart Circ Physiol 281:H895–902. (PMID: 11454596)
Wustmann K, Constantine A, Davies JE et al (2021) Prognostic implications of pulmonary wave reflection and reservoir pressure in patients with pulmonary Hypertension. Int J Cardiol Congenit Hear Dis 5:100199.
Glass A, McCall P, Arthur A et al (2023) Pulmonary artery wave reflection and right ventricular function after lung resection. Br J Anaesth 130:e128–e136. (PMID: 36115714)
Lammers SR, Kao PH, Qi HJ et al (2008) Changes in the structure-function relationship of elastin and its impact on the proximal pulmonary arterial mechanics of hypertensive calves. Am J Physiol Heart Circ Physiol 295:H1451–H1459. (PMID: 186604542593497)
Schäfer M, Kheyfets VO, Schroeder JD et al (2016) Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary Hypertension. Pulm Circ 6:37–45. (PMID: 270769064809665)
Odagiri K, Inui N, Hakamata A et al (2016) Non-invasive evaluation of pulmonary arterial blood flow and wall shear stress in pulmonary arterial Hypertension with 3D phase contrast magnetic resonance imaging. Springerplus 5:1–11.
Tang BT, Pickard SS, Chan FP et al (2014) Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial Hypertension: an image – based, computational fluid dynamics study. Pulm Circ 2:470–476.
Reiter G, Reiter U, Kovacs G et al (2008) Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary Hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 1:23–30. (PMID: 19808511)
Barker AJ, Roldán-Alzate A, Entezari P et al (2015) Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial Hypertension: results from two institutions. Magn Reson Med 73:1904–1913. (PMID: 24974951)
Li M, Stenmark KR, Shandas R et al (2011) Effects of Pathologic Flow on Pulmonary Artery. Sci York 46:561–571.
Szulcek R, Happé CM, Rol N et al (2016) Delayed microvascular shear-adaptation in pulmonary arterial Hypertension: role of PECAM-1 cleavage. Am J Respir Crit Care Med 33:1–58.
Fukumitsu M, Groeneveldt JA, Braams NJ et al (2022) When right ventricular pressure meets volume: the impact of arrival time of reflected waves on right ventricle load in pulmonary arterial Hypertension. J Physiol 600:2327–2344. (PMID: 35421903)
Rajaram S, Swift AJ, Telfer A et al (2013) 3D contrast-enhanced lung perfusion MRI is an effective screening tool for chronic thromboembolic pulmonary Hypertension: results from the ASPIRE Registry. Thorax 68:677–678. (PMID: 23349220)
Rajaram S, Swift AJ, Capener D et al (2012) Diagnostic accuracy of contrast-enhanced MR Angiography and unenhanced proton MR imaging compared with CT pulmonary angiography in chronic thromboembolic pulmonary Hypertension. Eur Radiol 22:310–317. (PMID: 21887483)
Braams NJ, van Leeuwen JW, Vonk Noordegraaf A et al (2021) Right ventricular adaptation to pressure-overload: differences between chronic thromboembolic pulmonary Hypertension and idiopathic pulmonary arterial Hypertension. J Hear Lung Transplant 40:458–466.
Heinrich M, Uder M, Tscholl D et al (2005) CT scan findings in Chronic Thromboembolic Pulmonary Hypertension: predictors of hemodynamic improvement after pulmonary thromboendarterectomy. Chest 127:1606–1613. (PMID: 15888835)
Rahaghi FN, Ross JC, Agarwal M et al (2016) Pulmonary vascular morphology as an ima.
McInnis MC, Wang D, Donahoe L et al (2020) Importance of computed tomography in defining segmental Disease in chronic thromboembolic pulmonary Hypertension. ERJ Open Res 6:1–9.
van de Veerdonk MC, Marcus JT, Bogaard H-J et al (2014) State of the art: advanced imaging of the right ventricle and pulmonary circulation in humans (2013 Grover Conference series). Pulm Circ 4:158–168. (PMID: 250064344070773)
Czerner CP, Schoenfeld C, Cebotari S et al (2020) Perioperative CTEPH patient monitoring with 2D phase-contrast MRI reflects clinical, cardiac and pulmonary perfusion changes after pulmonary endarterectomy. PLoS ONE 15:e0238171. (PMID: 329259247489536)
Dong ML, Azarine A, Haddad F et al (2022) 4D flow cardiovascular magnetic resonance recovery profiles following pulmonary endarterectomy in chronic thromboembolic pulmonary Hypertension. J Cardiovasc Magn Reson 24:1–16.
Rolf A, Rixe J, Kim WK et al (2014) Right ventricular adaptation to pulmonary pressure load in patients with chronic thromboembolic pulmonary Hypertension before and after successful pulmonary endarterectomy–a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:96. (PMID: 254755834256924)
Addetia K, Bhave NM, Tabit CE et al (2014) Sample size and cost analysis for pulmonary arterial Hypertension drug trials using various imaging modalities to assess right ventricular size and function end points. Circ Cardiovasc Imaging 7:115–124. (PMID: 24192452)
Vanderpool RR, Pinsky MR, Naeije R et al (2015) RV-pulmonary arterial coupling predicts outcome in patients referred for pulmonary Hypertension. Heart 101:37–43. (PMID: 25214501)
Tello K, Dalmer A, Axmann J et al (2019) Reserve of right ventricular-arterial coupling in the setting of chronic overload. Circ Hear Fail 12:e005512.
Galiè N, Humbert M, Vachiéry J-L et al (2015) 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary Hypertension. Eur Heart J 37:67–119. (PMID: 26320113)
Mahmud E, Madani MM, Kim NH et al (2018) Chronic thromboembolic pulmonary Hypertension: evolving therapeutic approaches for operable and inoperable Disease. J Am Coll Cardiol 71:2468–2486. (PMID: 29793636)
تواريخ الأحداث: Date Created: 20231030 Date Completed: 20240226 Latest Revision: 20240226
رمز التحديث: 20240226
DOI: 10.1007/s10554-023-02989-6
PMID: 37902921
قاعدة البيانات: MEDLINE
الوصف
تدمد:1875-8312
DOI:10.1007/s10554-023-02989-6