دورية أكاديمية

Discovery of insecticide resistance in field-collected populations of the aphid pest, Acyrthosiphon kondoi Shinji.

التفاصيل البيبلوغرافية
العنوان: Discovery of insecticide resistance in field-collected populations of the aphid pest, Acyrthosiphon kondoi Shinji.
المؤلفون: Chirgwin E; Cesar Australia, Brunswick, Australia., Thia JA; School of BioSciences, The University of Melbourne, Melbourne, Australia., Copping K; Lucerne Australia, Keith, Australia., Umina PA; Cesar Australia, Brunswick, Australia.; School of BioSciences, The University of Melbourne, Melbourne, Australia.
المصدر: Pest management science [Pest Manag Sci] 2024 Mar; Vol. 80 (3), pp. 1338-1347. Date of Electronic Publication: 2023 Dec 06.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Published for SCI by Wiley Country of Publication: England NLM ID: 100898744 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1526-4998 (Electronic) Linking ISSN: 1526498X NLM ISO Abbreviation: Pest Manag Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: West Sussex, UK : Published for SCI by Wiley, c2000-
مواضيع طبية MeSH: Insecticides*/pharmacology , Aphids*, Animals ; Insecticide Resistance ; Australia ; Medicago sativa
مستخلص: Background: The bluegreen aphid (Acyrthosiphon kondoi) is a worldwide pest of alfalfa, pulses, and other legume crops. An overreliance on insecticides to control A. kondoi has potentially placed populations under selection pressure favouring resistant phenotypes, but to date, there have been no documented cases of insecticide resistance. Recently, Australian growers began reporting that conventional insecticides were failing to adequately control A. kondoi populations, prompting this laboratory-based investigation into whether these populations have evolved resistance.
Results: We discovered four A. kondoi populations with moderate resistance (10-40-fold) to three different insecticide groups: organophosphates, carbamates and pyrethroids. However, A. kondoi populations showed no resistance to the butenolide, flupyradifurone. We were unable to identify general metabolic mechanisms using synergist assays (cytochromes P450, glutathione S-transferases, or esterases), indicating that further detailed molecular investigations to characterise the putative resistance mechanism are needed.
Conclusion: Insecticide-resistant A. kondoi present an emerging challenge to Australian agriculture. Growers require new tools and updated strategies, including access to newer chemistries, to alleviate their reliance on the few insecticides currently registered against A. kondoi. The implications of insecticide resistant A. kondoi for future management, the potential mechanisms of resistance, and future research priorities are discussed. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
(© 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.)
References: Ryalls JM, Riegler M, Moore BD and Johnson SN, Biology and trophic interactions of lucerne aphids. Agric For Entomol 15:335-350 (2013).
Allen PG, Arthropod pests and the persistence of pasture legumes in Australia, in Persistence of Forage Legumes, ed. by Marten GC, Matches AG, Barnes RF, Brougham RW, Clements RJ and Sheath GW. American society of Agronomy, Madison, Wisconsin, USA pp. 419-439 (1989).
Jovičić I, Radonjić A and Petrović-Obradović O, Aphids (Hemiptera: Aphididae) on alfalfa and their coccinellid predators in Serbia: seasonal abundance. Acta Zool Bulg 68:581-587 (2016).
Sharma R, Stern V and Hagemann R, Blue alfalfa aphid: a new pest in the Imperial Valley. Calif Agric 30:14-15 (1976).
Edwards OR, Franzmann B, Thackray D and Micic S, Insecticide resistance and implications for future aphid management in Australian grains and pastures: a review. Aust J Exp Agric 48:1523-1530 (2008).
Valenzuela I and Hoffmann AA, Effects of aphid feeding and associated virus injury on grain crops in Australia. Austral Entomol 54:292-305 (2015).
Bailey PT, Pests of Field Crops and Pastures: Identification and Control. CSIRO, Collingwood, Austalia (2007).
Bishop A, Walters P, Holtkamp R and Dominiak B, Relationships between Acyrthosiphon kondoi and damage in three varieties of alfalfa. J Econ Entomol 75:118-122 (1982).
Stern VM, Sharma R and Summers C, Alfalfa damage from Acyrthosiphon kondoi and economic threshold studies in southern California. J Econ Entomol 73:145-148 (1980).
Summers CG and Coviello RL, Impact of Acyrthosiphon kondoi (Homoptera: Aphididae) on alfalfa: field and greenhouse studies. J Econ Entomol 77:1052-1056 (1984).
Lawrence L, The future for aphids in Australian grain crops and pastures. Outlooks Pest Manag 20:285-288 (2009).
Milne W and Bishop A, The role of predators and parasites in the natural regulation of lucerne aphids in eastern Australia. J Appl Ecol 24:893-905 (1987).
Berlandier FA and Sweetingham MW, Aphid feeding damage causes large losses in susceptible lupin cultivars. Aust J Exp Agric 43:1357-1362 (2003).
Humphries A, Peck D, Robinson S, Rowe T and Oldach K, A new biotype of bluegreen aphid (Acyrthosiphon kondoi Shinji) found in South-Eastern Australia overcomes resistance in a broad range of pasture legumes. Crop Pasture Sci 63:893-901 (2012).
Thia JA, Hoffmann AA and Umina PA, Empowering Australian insecticide resistance research with genetic information: the road ahead. Austral Entomol 60:147-162 (2021).
Clouston A, Edwards O and Umina P, An insecticide baseline study of Australian broadacre aphids. Crop Pasture Sci 67:236-244 (2016).
Gould F, Brown ZS and Kuzma J, Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? Science 360:728-732 (2018).
Sparks TC, Crossthwaite AJ, Nauen R, Banba S, Cordova D, Earley F et al., Insecticides, biologics and nematicides: updates to IRAC's mode of action classification - a tool for resistance management. Pestic Biochem Phys 167:104587 (2020).
Mota-Sanchez D and Wise J, The arthropod pesticide resistance database (2021). http://www.pesticideresistance.org [19 February 2021].
Natwick E, Barlow V, Godfrey L, Goodell P and Long R, Blue alfalfa aphid: old pest with new management challanges, in California Alfalfa, Forage, and Grain Symposium. University of California, Davis: Anaheim, CA (2014).
Thia JA, Cheng X, Maino J, Umina PA and Hoffmann AA, Warmer temperatures reduce chemical tolerance in the redlegged earth mite (Halotydeus destructor), an invasive winter-active pest. Pest Manag Sci 78:3071-3079 (2022).
Adams AJ, Lindquist RK, Adams IHH and Hall FR, Efficacy of bifenthrin against pyrethroid-resistant and - susceptible populations of glasshouse whitefly in bioassays and using three spray application methods. Crop Protect 10:106-110 (1991).
Umina P, Edwards O, Carson P, Rooyen A and Anderson A, High levels of resistance to carbamate and Pyrethroid chemicals widespread in Australian Myzus persicae (Hemiptera: Aphididae) populations. J Econ Entomol 107:1626-1638 (2014).
IRAC, IRAC Susceptibility Test Method 019 (2022).
Umina PA, Bass C, van Rooyen A, Chirgwin E, Arthur AL, Pym A et al., Spirotetramat resistance in Myzus persicae (Sulzer) (Hemiptera: Aphididae) and its association with the presence of the A2666V mutation. Pest Manag Sci 78:4822-4831 (2022).
Willow J, Silva A, Veromann E and Smagghe G, Acute effect of low-dose thiacloprid exposure synergised by tebuconazole in a parasitoid wasp. PloS One 14:e0212456 (2019).
Ma K, Tang Q, Zhang B, Liang P, Wang B and Gao X, Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii glover. Pestic Biochem Phys 157:204-210 (2019).
Yadav J, Ranga P and Guruwan D, Role of synergists in combating insect resistance to pesticides, pp. 45-59 (2018).
Pereira AE, Souza D, Zukoff SN, Meinke LJ and Siegfried BD, Cross-resistance and synergism bioassays suggest multiple mechanisms of pyrethroid resistance in western corn rootworm populations. PloS One 12:e0179311 (2017).
Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS et al., Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet 6:e1000999 (2010).
Müller V, Buer B, Lüke B, Mazzoni E, Pym A, Bass C et al., Molecular characterization of pyrethroid resistance in field-collected populations of the pea aphid, Acyrthosiphon pisum. Entomol Gen 43:627-637 (2023).
Raffa K and Priester T, Synergist as research tools and control agents in agriculture. J Agric Entomol 2:27-45 (1985).
Chang J, Cao C-W and Gao X-W, The effect of pretreatment with S,S,S-tributyl phosphorotrithioate on deltamethrin resistance and carboxylesterase activity in Aphis gossypii (glover) (Homoptera: Aphididae). Pestic Biochem Phys 98:296-299 (2010).
Bingham G, Gunning RV, Gorman K, Field LM and Moores GD, Temporal synergism by microencapsulation of piperonyl butoxide and α-cypermethrin overcomes insecticide resistance in crop pests. Pest Manag Sci 63:276-281 (2007).
Lu Y and Gao X, Multiple mechanisms responsible for differential susceptibilities of Sitobion avenae (Fabricius) and Rhopalosiphum padi (Linnaeus) to pirimicarb. Bull Entomol Res 99:611-617 (2009).
Gong P, Chen D, Wang C, Li M, Li X, Zhang Y et al., Susceptibility of four species of aphids in wheat to seven insecticides and its relationship to detoxifying enzymes. Front Physiol 11:1-8 (2021).
Umina PA, Reidy-Crofts J, Edwards O, Chirgwin E, Ward S, Maino J et al., Susceptibility of the cowpea aphid (Hemiptera: Aphididae) to widely used insecticides in Australia. J Econ Entomol 115:143-150 (2021).
Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH et al., Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127-135 (2009).
O'Brien TE and Silcox J, Efficient experimental design for dose response modelling. J Appl Stat 48:2864-2888 (2021).
McElreath R, Statistical Rethinking: A Bayesian Course with Examples in R and Stan. CRC press, Boca Raton, Florida, USA (2020).
Elston DA, Moss R, Boulinier T, Arrowsmith C and Lambin X, Analysis of aggregation, a worked example: numbers of ticks on red grouse chicks. Parasitology 122:563-569 (2001).
Harrison XA, Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2:e616 (2014).
R Core Team, A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ [7 September 2022].
Bates D, Mächler M, Bolker B and Walker S, Fitting linear mixed-effects models using lme4. J Stat Softw 67:48 (2015).
APVMA, Public Chemical Registration Information System Search https://portal.apvma.gov.au/pubcris [17January 2023].
Umina PA, McDonald G, Maino J, Edwards O and Hoffmann AA, Escalating insecticide resistance in Australian grain pests: contributing factors, industry trends and management opportunities. Pest Manag Sci 75:1494-1506 (2019).
Hori K and Miles P, The etiology of damage to lucerne by the green mirid, Creontiades dilutus (Stal). Aust J Exp Agric 33:327-331 (1993).
McColl SA, Khan M and Umina PA, Review of the biology and control of Creontiades dilutus (Stål) (Hemiptera: Miridae). Aust J Entomol 50:107-117 (2011).
Bass C, Puinean A, Zimmer C, Denholm I, Field L, Foster S et al., The evolution of insecticide resistant in the peach potato aphid, Myzus persicae. Insect Biochem Mol Biol 51:41-51 (2014).
Devonshire AL and Moores GD, A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic Biochem Phys 18:235-246 (1982).
Edwards OR, Walsh TK, Metcalfe S, Tay WT, Hoffmann AA, Mangano P et al., A genomic approach to identify and monitor a novel pyrethroid resistance mutation in the redlegged earth mite, Halotydeus destructor. Pestic Biochem Phys 144:83-90 (2018).
Khajehali J, Van Leeuwen T, Grispou M, Morou E, Alout H, Weill M et al., Acetylcholinesterase point mutations in European strains of Tetranychus urticae (Acari: Tetranychidae) resistant to organophosphates. Pest Manag Sci 66:220-228 (2010).
Gott RC, Kunkel GR, Zobel ES, Lovett BR and Hawthorne DJ, Implicating ABC transporters in insecticide resistance: research strategies and a decision framework. J Econ Entomol 110:667-677 (2017).
Pohl PC, Klafke GM, Júnior JR, Martins JR, da Silva VI and Masuda A, ABC transporters as a multidrug detoxification mechanism in Rhipicephalus (Boophilus) microplus. Parasitol Res 111:2345-2351 (2012).
Epis S, Porretta D, Mastrantonio V, Comandatore F, Sassera D, Rossi P et al., ABC transporters are involved in defense against permethrin insecticide in the malaria vector Anopheles stephensi. Parasit Vectors 7:1-7 (2014).
Lanning CL, Fine RL, Corcoran JJ, Ayad HM, Rose RL and Abou-Donia MB, Tobacco budworm P-glycoprotein: biochemical characterization and its involvement in pesticide resistance. Biochim Biophys Acta 1291:155-162 (1996).
Wood OR, Hanrahan S, Coetzee M, Koekemoer LL and Brooke BD, Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 3:67 (2010).
Lin Y, Jin T, Zeng L and Lu Y, Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pestic Biochem Phys 103:189-193 (2012).
Li Q, Sun J, Qin Y, Fan J, Zhang Y, Tan X et al., Reduced insecticide susceptibility of the wheat aphid Sitobion miscanthi after infection by the secondary bacterial symbiont Hamiltonella defensa. Pest Manag Sci 77:1936-1944 (2021).
Liu X and Guo H, Importance of endosymbionts Wolbachia and rickettsia in insect resistance development. Curr Opin Insect Sci 33:84-90 (2019).
Sparks TC, Storer N, Porter A, Slater R and Nauen R, Insecticide resistance management and industry: the origins and evolution of the I nsecticide R esistance a ction C ommittee (IRAC) and the mode of action classification scheme. Pest Manag Sci 77:2609-2619 (2021).
McCormack BP and Whitworth RJ, Alfalfa Insect Pest Management. Kansas State University, Kansas State University, pp. 1-8 (2022).
Chirgwin E, Kemp S, Maino JL, Babineau M, Roberts I, Govender A et al., Beneficial invertebrates of dairy pastures in South-Eastern Australia. Crop Pasture Sci 73:716-731 (2022).
Ward SE, Umina PA, Macfadyen S and Hoffmann AA, Hymenopteran parasitoids of aphid pests within Australian grain production landscapes. Insects 12:44 (2021).
Bishop AL and Milne WM, The impact of predators on lucerne aphids and thus on the seasonal production of lucerne in the Hunter Valley, New South Wales. Aust J Entomol 25:333-337 (1986).
Milne WM, Evaluation of the establishment of Aphidius ervi Haliday (hymenoptera: Braconidae) in lucerne aphid populations in New South Wales. Aust J Entomol 38:145-147 (1999).
Zarrabi AA, Berberet RC and Caddel JL, New biotype of Acyrthosiphon kondoi (Homoptera: Aphididae) on alfalfa in Oklahoma. J Econ Entomol 88:1461-1465 (1995).
Humphries AW, Robinson SS, Hawkey D, Peck DM, Rowe TD, de Koning CT et al., Diversity for resistance to a moderately virulent bluegreen aphid (Acyrthosiphon kondoi Shinji) population in Trifolium species. Crop Pasture Sci 67:1009-1018 (2016).
Ross PA, Turelli M and Hoffmann AA, Evolutionary ecology of Wolbachia releases for disease control. Annu Rev Genet 53:93-116 (2019).
Guo S-K, Gong Y-J, Chen J-C, Shi P, Cao L-J, Yang Q et al., Increased density of endosymbiotic Buchnera related to pesticide resistance in yellow morph of melon aphid. J Pest Sci 93:1281-1294 (2020).
Desneux N, Asplen MK, Brady CM, Heimpel GE, Hopper KR, Luo C et al., Intraspecific variation in facultative symbiont infection among native and exotic pest populations: potential implications for biological control. Biol Control 116:27-35 (2018).
Yang Q, Umina PA, Wei S, Bass C, Yu W, Robinson KL et al., Diversity and regional variation of endosymbionts in the green peach aphid, Myzus persicae (Sulzer). Diversity 15:206 (2023).
Chirgwin E, Yang Q, Umina PA, Gill A, Soleimannejad S, Gu X et al., Fungicides have transgenerational effects on Rhopalosiphum padi but not their endosymbionts. Pest Manag Sci 78:4709-4718 (2022).
Hackett SC and Bonsall MB, Type of fitness cost influences the rate of evolution of resistance to transgenic Bt crops. J Appl Ecol 53:1391-1401 (2016).
Foster S, Harrington R, Devonshire A, Denholm I, Clark S and Mugglestone M, Evidence for a possible fitness trade-off between insecticide resistance and the low temperature movement that is essential for survival of UK populations of Myzus persicae (Hemiptera: Aphididae). Bull Entomol Res 87:573-579 (1997).
Silva AX, Bacigalupe LD, Luna-Rudloff M and Figueroa CC, Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) II: costs and benefits. PloS One 7:e36810 (2012).
Maino JL, Renton M, Hoffmann AA and Umina PA, Field margins provide a refuge for pest genes beneficial to resistance management. J Pest Sci 92:1017-1026 (2019).
Dejong G and Vannoordwijk AJ, Acquisition and allocation of resources: genetic (co) variances, selection, and life histories. Am Nat 139:749-770 (1992).
Arthur AL, Kirkland L, Chirgwin E, van Rooyen A and Umina PA, Baseline susceptibility of Australian Myzus persicae (Hemiptera: Aphididae) to novel insecticides flonicamid and afidopyropen. Crop Prot 158:105992 (2022).
معلومات مُعتمدة: Agrifutures Australia; Grains Research and Development Corporation
فهرسة مساهمة: Keywords: adaptation; alfalfa aphid; cross-resistance; lentils; lucerne; pastures
المشرفين على المادة: 0 (Insecticides)
تواريخ الأحداث: Date Created: 20231102 Date Completed: 20240208 Latest Revision: 20240208
رمز التحديث: 20240208
DOI: 10.1002/ps.7864
PMID: 37915298
قاعدة البيانات: MEDLINE
الوصف
تدمد:1526-4998
DOI:10.1002/ps.7864