دورية أكاديمية

Extracellular vesicles from non-neuroendocrine SCLC cells promote adhesion and survival of neuroendocrine SCLC cells.

التفاصيل البيبلوغرافية
العنوان: Extracellular vesicles from non-neuroendocrine SCLC cells promote adhesion and survival of neuroendocrine SCLC cells.
المؤلفون: Jimenez L; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.; Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA., Stolzenbach V; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.; Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA., Ozawa PMM; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.; Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA., Ramirez-Solano M; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Liu Q; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA., Sage J; Department of Pediatrics, Stanford Medicine, Stanford, California, USA.; Department of Genetics, Stanford Medicine, Stanford, California, USA., Weaver AM; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.; Center for Extracellular Vesicle Research, Vanderbilt University, Nashville, Tennessee, USA.; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
المصدر: Proteomics [Proteomics] 2024 Jun; Vol. 24 (11), pp. e2300030. Date of Electronic Publication: 2023 Nov 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101092707 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9861 (Electronic) Linking ISSN: 16159853 NLM ISO Abbreviation: Proteomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH,
مواضيع طبية MeSH: Small Cell Lung Carcinoma*/metabolism , Small Cell Lung Carcinoma*/pathology , Small Cell Lung Carcinoma*/genetics , Cell Adhesion* , Lung Neoplasms*/metabolism , Lung Neoplasms*/pathology , Lung Neoplasms*/genetics , Extracellular Vesicles*/metabolism , Cell Survival*, Humans ; Cell Line, Tumor ; Extracellular Matrix Proteins/metabolism ; Proteomics/methods ; Laminin/metabolism
مستخلص: Small cell lung cancer (SCLC) tumors are made up of distinct cell subpopulations, including neuroendocrine (NE) and non-neuroendocrine (non-NE) cells. While secreted factors from non-NE SCLC cells have been shown to support the growth of the NE cells, the underlying molecular factors are not well understood. Here, we show that exosome-type small extracellular vesicles (SEVs) secreted from non-NE SCLC cells promote adhesion and survival of NE SCLC cells. Proteomic analysis of purified SEVs revealed that extracellular matrix (ECM) proteins and integrins are highly enriched in SEVs of non-NE cells whereas nucleic acid-binding proteins are enriched in SEVs purified from NE cells. Addition of select purified ECM proteins identified in purified extracellular vesicles (EVs), specifically fibronectin, laminin 411, and laminin 511, were able to substitute for the role of non-NE-derived SEVs in promoting adhesion and survival of NE SCLC cells. Those same proteins were differentially expressed by human SCLC subtypes. These data suggest that ECM-carrying SEVs secreted by non-NE cells play a key role in supporting the growth and survival of NE SCLC cells.
(© 2023 Wiley‐VCH GmbH.)
References: Waqar, S. N., & Morgensztern, D. (2017). Treatment advances in small cell lung cancer (SCLC). Pharmacology & Therapeutics, 180, 16–23. https://doi.org/10.1016/j.pharmthera.2017.06.002.
Bernhardt, E. B., & Jalal, S. I. (2016). Small cell lung cancer. In K. L. Reckamp (Ed.), Lung cancer: Treatment and research (pp. 301–322). Springer International Publishing. https://doi.org/10.1007/978‐3‐319‐40389‐2_14.
Karim, S. M., & Zekri, J. (2012). Chemotherapy for small cell lung cancer: A comprehensive review. Oncology Reviews, 6(1), 4. https://doi.org/10.4081/oncol.2012.e4.
Li, T., & Qiao, T. (2022). Unraveling tumor microenvironment of small‐cell lung cancer: Implications for immunotherapy. Seminars in Cancer Biology, 86(Pt 2), 117–125. https://doi.org/10.1016/j.semcancer.2022.09.005.
Yang, D., Denny, S. K., Greenside, P. G., Chaikovsky, A. C., Brady, J. J., Ouadah, Y., Granja, J. M., Jahchan, N. S., Lim, J. S., Kwok, S., Kong, C. S., Berghoff, A. S., Schmitt, A., Reinhardt, H. C, Park, K. S., Preusser, M., Kundaje, A., Greenleaf, W. J., Sage, J., & Winslow, M. M. (2018). Intertumoral heterogeneity in SCLC is influenced by the cell type of origin. Cancer Discovery, 8(10), 1316–1331. https://doi.org/10.1158/2159‐8290.CD‐17‐0987.
Groves, S. M., Ildefonso, G. V., Mcatee, C. O., Ozawa, P. M. M., Ireland, A. S., Stauffer, P. E., Wasdin, P. T., Huang, X., Qiao, Y., Lim, J. S., Bader, J., Liu, Q., Simmons, A. J., Lau, K. S., Iams, W. T., Hardin, D. P., Saff, E. B., Holmes, W. R., Tyson, D. R., … Quaranta, V. (2022). Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. Cell Systems, 13(9), 690–710.e17. https://doi.org/10.1016/j.cels.2022.07.006.
Rudin, C. M., Poirier, J. T., Byers, L. A., Dive, C., Dowlati, A., George, J., Heymach, J. V., Johnson, J. E., Lehman, J. M., Macpherson, D., Massion, P. P., Minna, J. D., Oliver, T. G., Quaranta, V., Sage, J., Thomas, R. K., Vakoc, C. R., & Gazdar, A. F. (2019). Molecular subtypes of small cell lung cancer: A synthesis of human and mouse model data. Nature Reviews Cancer, 19(5), 289–297. https://doi.org/10.1038/s41568‐019‐0133‐9.
Gazdar, A. F., Bunn, P. A., & Minna, J. D. (2017). Small‐cell lung cancer: What we know, what we need to know and the path forward. Nature Reviews Cancer, 17(12), 725–737. https://doi.org/10.1038/nrc.2017.87.
Gay, C. M., Stewart, C. A, Park, E. M., Diao, L., Groves, S. M., Heeke, S., Nabet, B. Y., Fujimoto, J., Solis, L. M., Lu, W., Xi, Y., Cardnell, R. J., Wang, Q., Fabbri, G., Cargill, K. R., Vokes, N. I., Ramkumar, K., Zhang, B., Della Corte, C. M., … Byers, L. A. (2021). Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell, 39(3), 346–360.e7. https://doi.org/10.1016/j.ccell.2020.12.014.
Stewart, C. A, Gay, C. M., Xi, Y., Sivajothi, S., Sivakamasundari, V., Fujimoto, J., Bolisetty, M., Hartsfield, P. M., Balasubramaniyan, V., Chalishazar, M. D., Moran, C., Kalhor, N., Stewart, J., Tran, H., Swisher, S. G., Roth, J. A., Zhang, J., De Groot, J., Glisson, B., …, Byers, L. A. (2020). Single‐cell analyses reveal increased intratumoral heterogeneity after the onset of therapy resistance in small‐cell lung cancer. Nature Cancer, 1, 423–436. https://doi.org/10.1038/s43018‐019‐0020‐z.
Sutherland, K. D., Proost, N., Brouns, I., Adriaensen, D., Song, J.‐Y., & Berns, A. (2011). Cell of origin of small cell lung cancer: Inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell, 19(6), 754–764. https://doi.org/10.1016/j.ccr.2011.04.019.
Chen, H. J., Poran, A., Unni, A. M., Huang, S. X., Elemento, O., Snoeck, H. W., & Varmus, H. (2019). Generation of pulmonary neuroendocrine cells and SCLC‐like tumors from human embryonic stem cells. Journal of Experimental Medicine, 216(3), 674–687. https://doi.org/10.1084/jem.20181155.
Noguchi, M., Furukawa, K. T., & Morimoto, M. (2020). Pulmonary neuroendocrine cells: Physiology, tissue homeostasis and disease. Disease Models & Mechanisms, 13(12), dmm046920. https://doi.org/10.1242/dmm.046920.
Jahchan, N. S., Lim, J. S., Bola, B., Morris, K., Seitz, G., Tran, K. Q., Xu, L., Trapani, F., Morrow, C. J., Cristea, S., Coles, G. L., Yang, D., Vaka, D., Kareta, M. S., George, J., Mazur, P. K., Nguyen, T., Anderson, W. C., Dylla, S. J., … Sage, J. (2016). Identification and targeting of long‐term tumor‐propagating cells in small cell lung cancer. Cell Reports, 16(3), 644–656. https://doi.org/10.1016/j.celrep.2016.06.021.
Lim, J. S., Ibaseta, A., Fischer, M. M., Cancilla, B., O'young, G., Cristea, S., Luca, V. C., Yang, D., Jahchan, N. S., Hamard, C., Antoine, M., Wislez, M., Kong, C., Cain, J., Liu, Y.‐W., Kapoun, A. M., Garcia, K. C, Hoey, T., Murriel, C. L., & Sage, J. (2017). Intratumoural heterogeneity generated by Notch signalling promotes small‐cell lung cancer. Nature, 545(7654), 360–364. https://doi.org/10.1038/nature22323.
Kadomatsu, K., & Muramatsu, T. (2004). Midkine and pleiotrophin in neural development and cancer. Cancer Letters, 204(2), 127–143. https://doi.org/10.1016/s0304‐3835(03)00450‐6.
Kwon, M. C., Proost, N., Song, J.‐Y., Sutherland, K. D., Zevenhoven, J., & Berns, A. (2015). Paracrine signaling between tumor subclones of mouse SCLC: A critical role of ETS transcription factor Pea3 in facilitating metastasis. Genes & Development, 29(15), 1587–1592. https://doi.org/10.1101/gad.262998.115.
Calbo, J., Van Montfort, E., Proost, N., Van Drunen, E., Beverloo, H. B, Meuwissen, R., & Berns, A. (2011). A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell, 19(2), 244–256. https://doi.org/10.1016/j.ccr.2010.12.021.
Sato, S., & Weaver, A. M. (2018). Extracellular vesicles: Important collaborators in cancer progression. Essays in Biochemistry, 62(2), 149–163. https://doi.org/10.1042/EBC20170080.
Maas, S. L. N., Breakefield, X. O., & Weaver, A. M. (2017). Extracellular vesicles: Unique intercellular delivery vehicles. Trends in Cell Biology, 27(3), 172–188. https://doi.org/10.1016/j.tcb.2016.11.003.
Cao, Q., Liu, Y., Wu, Y., Hu, C., Sun, L., Wang, J., Li, C., Guo, M., Liu, X., Lv, J., Huo, X., Yue, J., Du, X., & Chen, Z. (2020). Profilin 2 promotes growth, metastasis, and angiogenesis of small cell lung cancer through cancer‐derived exosomes. Aging (Albany NY), 12(24), 25981–25999. https://doi.org/10.18632/aging.202213.
Dou, X., Hua, Y., Chen, Z., Chao, F., & Li, M. (2022). Extracellular vesicles containing PD‐L1 contribute to CD8+ T‐cell immune suppression and predict poor outcomes in small cell lung cancer. Clinical and Experimental Immunology, 207(3), 307–317. https://doi.org/10.1093/cei/uxac006.
Xu, Z. H., Miao, Z.‐W., Jiang, Q. Z., Gan, D. X., Wei, X.‐G., Xue, X. Z., Li, J.‐Q., Zheng, F., Qin, X. X., Fang, W. G., Chen, Y.‐H., & Li, B. (2019). Brain microvascular endothelial cell exosome‐mediated S100A16 up‐regulation confers small‐cell lung cancer cell survival in brain. The FASEB Journal, 33(2), 1742–1757. https://doi.org/10.1096/fj.201800428R.
Choi, E. S., Faruque, H. A., Kim, J. H., Kim, K. J., Choi, J. E., Kim, B. A., Kim, B., Kim, Y. J, Woo, M. H., Park, J. Y., Hur, K., Lee, M.‐Y., Kim, D. S., Lee, S. Y., & Kim, E. (2021). CD5L as an extracellular vesicle‐derived biomarker for liquid biopsy of lung cancer. Diagnostics (Basel), 11(4), 620. https://doi.org/10.3390/diagnostics11040620.
Jahchan, N. S., Dudley, J. T., Mazur, P. K., Flores, N., Yang, D., Palmerton, A., Zmoos, A. F., Vaka, D., Tran, K. Q. T., Zhou, M., Krasinska, K., Riess, J. W., Neal, J. W., Khatri, P., Park, K. S., Butte, A. J., & Sage, J. (2013). A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discovery, 3(12), 1364–1377. https://doi.org/10.1158/2159‐8290.CD‐13‐0183.
Carney, D. N., Gazdar, A. F., Bepler, G., Guccion, J. G., Marangos, P. J., Moody, T. W., Zweig, M. H., & Minna, J. D. (1985). Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Research, 45(6), 2913–2923. https://www.ncbi.nlm.nih.gov/pubmed/2985257.
Jimenez, L., Yu, H., Mckenzie, A. J., Franklin, J. L., Patton, J. G., Liu, Q., & Weaver, A. M. (2019). Quantitative proteomic analysis of small and large extracellular vesicles (EVs) reveals enrichment of adhesion proteins in small EVs. Journal of Proteome Research, 18(3), 947–959. https://doi.org/10.1021/acs.jproteome.8b00647.
Thissen, D., Steinberg, L., & Kuang, D. (2002). Quick and easy implementation of the Benjamini‐Hochberg procedure for controlling the false positive rate in multiple comparisons. Journal of Educational and Behavioral Statistics, 27(1), 77–83. https://doi.org/10.3102/10769986027001077.
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675.
Park, K. S., Martelotto, L. G., Peifer, M., Sos, M. L., Karnezis, A. N., Mahjoub, M. R., Bernard, K., Conklin, J. F., Szczepny, A., Yuan, J., Guo, R., Ospina, B., Falzon, J., Bennett, S., Brown, T. J., Markovic, A., Devereux, W. L., Ocasio, C. A., Chen, J. K., … Sage, J. (2011). A crucial requirement for Hedgehog signaling in small cell lung cancer. Nature Medicine, 17(11), 1504–1508. https://doi.org/10.1038/nm.2473.
Ponath, P., Menezes, D., Pan, C., Chen, B., Oyasu, M., Strachan, D., Leblanc, H., Sun, H., Wang, X.‐T., Rangan, V. S., Deshpande, S., Cristea, S., Park, K. S., Sage, J., & Cardarelli, P. M. (2018). A novel, fully human anti‐fucosyl‐GM1 antibody demonstrates potent in vitro and in vivo antitumor activity in preclinical models of small cell lung cancer. Clinical Cancer Research, 24(20), 5178–5189. https://doi.org/10.1158/1078‐0432.CCR‐18‐0018.
Wooten, D. J., Groves, S. M., Tyson, D. R., Liu, Q., Lim, J. S., Albert, R., Lopez, C. F., Sage, J., & Quaranta, V. (2019). Systems‐level network modeling of Small Cell Lung Cancer subtypes identifies master regulators and destabilizers. PLoS Computational Biology, 15(10), e1007343. https://doi.org/10.1371/journal.pcbi.1007343.
Winkler, J., Abisoye‐Ogunniyan, A., Metcalf, K. J., & Werb, Z. (2020). Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 11(1), 5120. https://doi.org/10.1038/s41467‐020‐18794‐x.
Wierzbicka‐Patynowski, I., & Schwarzbauer, J. E. (2003). The ins and outs of fibronectin matrix assembly. Journal of Cell Science, 116(Pt 16), 3269–3276. https://doi.org/10.1242/jcs.00670.
Patel, M. R., & Weaver, A. M. (2021). Astrocyte‐derived small extracellular vesicles promote synapse formation via fibulin‐2‐mediated TGF‐beta signaling. Cell Reports, 34(10), 108829. https://doi.org/10.1016/j.celrep.2021.108829.
Gocheva, V., Naba, A., Bhutkar, A., Guardia, T., Miller, K. M., Li, C. M.‐C., Dayton, T. L., Sanchez‐Rivera, F. J., Kim‐Kiselak, C., Jailkhani, N., Winslow, M. M., Del Rosario, A., Hynes, R. O., & Jacks, T. (2017). Quantitative proteomics identify tenascin‐C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proceedings of the National Academy of Sciences of the United States of America, 114(28), E5625–E5634. https://doi.org/10.1073/pnas.1707054114.
Lowy, C. M., & Oskarsson, T. (2015). Tenascin C in metastasis: A view from the invasive front. Cell Adhesion & Migration, 9(1‐2), 112–124. https://doi.org/10.1080/19336918.2015.1008331.
Oskarsson, T., Acharyya, S., Zhang, X. H.‐F., Vanharanta, S., Tavazoie, S. F., Morris, P. G., Downey, R. J., Manova‐Todorova, K., Brogi, E., & Massagué, J. (2011). Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nature Medicine, 17(7), 867–874. https://doi.org/10.1038/nm.2379.
Pouliot, N., & Kusuma, N. (2013). Laminin‐511. Cell Adhesion & Migration, 7(1), 142–149. https://doi.org/10.4161/cam.22125.
Di Russo, J., Luik, A.‐L., Yousif, L., Budny, S., Oberleithner, H., Hofschröer, V., Klingauf, J., Van Bavel, E., Bakker, E. N., Hellstrand, P., Bhattachariya, A., Albinsson, S., Pincet, F., Hallmann, R., & Sorokin, L. M. (2017). Endothelial basement membrane laminin 511 is essential for shear stress response. The EMBO Journal, 36(2), 183–201. https://doi.org/10.15252/embj.201694756.
Iwamuro, M., Shiraha, H., Oyama, A., Uchida, D., Horiguchi, S., & Okada, H. (2021). Laminin‐411 and ‐511 modulate the proliferation, adhesion, and morphology of gastric cancer cells. Cell Biochemistry and Biophysics, 79(2), 407–418. https://doi.org/10.1007/s12013‐021‐00972‐3.
Takayama, K., Mitani, S., Nagamoto, Y., Sakurai, F., Tachibana, M., Taniguchi, Y., Sekiguchi, K., & Mizuguchi, H. (2016). Laminin 411 and 511 promote the cholangiocyte differentiation of human induced pluripotent stem cells. Biochemical and Biophysical Research Communications, 474(1), 91–96. https://doi.org/10.1016/j.bbrc.2016.04.075.
Hongisto, H., Vuoristo, S., Mikhailova, A., Suuronen, R., Virtanen, I., Otonkoski, T., & Skottman, H. (2012). Laminin‐511 expression is associated with the functionality of feeder cells in human embryonic stem cell culture. Stem Cell Research, 8(1), 97–108. https://doi.org/10.1016/j.scr.2011.08.005.
Hall, M. L., Givens, S., Santosh, N., Iacovino, M., Kyba, M., & Ogle, B. M. (2022). Laminin 411 mediates endothelial specification via multiple signaling axes that converge on beta‐catenin. Stem Cell Reports, 17(3), 569–583. https://doi.org/10.1016/j.stemcr.2022.01.005.
Groves, S. M., Panchy, N., Tyson, D. R., Harris, L. A., Quaranta, V., & Hong, T. (2023). Involvement of epithelial‐mesenchymal transition genes in small cell lung cancer phenotypic plasticity. Cancers (Basel), 15(5), 1477. https://doi.org/10.3390/cancers15051477.
Mollaoglu, G., Guthrie, M. R., Böhm, S., Brägelmann, J., Can, I., Ballieu, P. M., Marx, A., George, J., Heinen, C., Chalishazar, M. D., Cheng, H., Ireland, A. S., Denning, K. E., Mukhopadhyay, A., Vahrenkamp, J. M., Berrett, K. C., Mosbruger, T. L., Wang, J., Kohan, J. L., … Oliver, T. G. (2017). MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell, 31(2), 270–285. https://doi.org/10.1016/j.ccell.2016.12.005.
Osborne, J. K., Larsen, J. E., Shields, M. D., Gonzales, J. X., Shames, D. S., Sato, M., Kulkarni, A., Wistuba, I. I., Girard, L., Minna, J. D., & Cobb, M. H. (2013). NeuroD1 regulates survival and migration of neuroendocrine lung carcinomas via signaling molecules TrkB and NCAM. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6524–6529. https://doi.org/10.1073/pnas.1303932110.
Poirier, J. T., Dobromilskaya, I., Moriarty, W. F., Peacock, C. D., Hann, C. L., & Rudin, C. M. (2013). Selective tropism of Seneca Valley virus for variant subtype small cell lung cancer. JNCI: Journal of the National Cancer Institute, 105(14), 1059–1065. https://doi.org/10.1093/jnci/djt130.
Ireland, A. S., Micinski, A. M., Kastner, D. W., Guo, B., Wait, S. J., Spainhower, K. B., Conley, C. C., Chen, O. S., Guthrie, M. R., Soltero, D., Qiao, Y., Huang, X., Tarapcsák, S., Devarakonda, S., Chalishazar, M. D., Gertz, J., Moser, J. C., Marth, G., Puri, S., … Oliver, T. G. (2020). MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell, 38(1), 60–78.e12. https://doi.org/10.1016/j.ccell.2020.05.001.
Krohn, A., Ahrens, T., Yalcin, A., Plönes, T., Wehrle, J., Taromi, S., Wollner, S., Follo, M., Brabletz, T., Mani, S. A., Claus, R., Hackanson, B., & Burger, M. (2014). Tumor cell heterogeneity in small cell lung cancer (SCLC): Phenotypical and functional differences associated with epithelial‐mesenchymal transition (EMT) and DNA methylation changes. PLoS ONE, 9(6), e100249. https://doi.org/10.1371/journal.pone.0100249.
Kursunel, M. A, Taskiran, E. Z., Tavukcuoglu, E., Yanik, H., Demirag, F., Karaosmanoglu, B., Ozbay, F. G., Uner, A., Esendagli, D., Kizilgoz, D., Yilmaz, U., & Esendagli, G. (2022). Small cell lung cancer stem cells display mesenchymal properties and exploit immune checkpoint pathways in activated cytotoxic T lymphocytes. Cancer Immunology, Immunotherapy, 71(2), 445–459. https://doi.org/10.1007/s00262‐021‐02998‐1.
Ouadah, Y., Rojas, E. R., Riordan, D. P., Capostagno, S., Kuo, C. S., & Krasnow, M. A. (2019). Rare pulmonary neuroendocrine cells are stem cells regulated by Rb, p53, and Notch. Cell, 179(2), 403–416.e23. https://doi.org/10.1016/j.cell.2019.09.010.
Qu, S., Fetsch, P., Thomas, A., Pommier, Y., Schrump, D. S., Miettinen, M. M., & Chen, H. (2022). Molecular subtypes of primary SCLC tumors and their associations with neuroendocrine and therapeutic markers. Journal of Thoracic Oncology, 17(1), 141–153. https://doi.org/10.1016/j.jtho.2021.08.763.
Baine, M. K., Hsieh, M. S., Lai, W. V, Egger, J. V., Jungbluth, A. A., Daneshbod, Y., Beras, A., Spencer, R., Lopardo, J., Bodd, F., Montecalvo, J., Sauter, J. L., Chang, J. C., Buonocore, D. J., Travis, W. D., Sen, T., Poirier, J. T., Rudin, C. M., & Rekhtman, N. (2020). SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: A comprehensive immunohistochemical and histopathologic characterization. Journal of Thoracic Oncology, 15(12), 1823–1835. https://doi.org/10.1016/j.jtho.2020.09.009.
Chen, S., Lewallen, M., & Xie, T. (2013). Adhesion in the stem cell niche: Biological roles and regulation. Development (Cambridge, England), 140(2), 255–265. https://doi.org/10.1242/dev.083139.
Marthiens, V., Kazanis, I., Moss, L., Long, K., & Ffrench‐Constant, C. (2010). Adhesion molecules in the stem cell niche – more than just staying in shape? Journal of Cell Science, 123(Pt 10), 1613–1622. https://doi.org/10.1242/jcs.054312.
Ahmed, M., & Ffrench‐Constant, C. (2016). Extracellular matrix regulation of stem cell behavior. Current Stem Cell Reports, 2, 197–206. https://doi.org/10.1007/s40778‐016‐0056‐2.
Pennings, S., Liu, K. J., & Qian, H. (2018). The stem cell niche: Interactions between stem cells and their environment. Stem Cells International, 2018, 4879379. https://doi.org/10.1155/2018/4879379.
Ye, J., Wu, D., Wu, P., Chen, Z., & Huang, J. (2014). The cancer stem cell niche: Cross talk between cancer stem cells and their microenvironment. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 35(5), 3945–3951. https://doi.org/10.1007/s13277‐013‐1561‐x.
George, J., Lim, J. S., Jang, S. J, Cun, Y., Ozretić, L., Kong, G., Leenders, F., Lu, X., Fernández‐Cuesta, L., Bosco, G., Müller, C., Dahmen, I., Jahchan, N. S., Park, K. S., Yang, D., Karnezis, A. N., Vaka, D., Torres, A., Wang, M. S., … Thomas, R. K. (2015). Comprehensive genomic profiles of small cell lung cancer. Nature, 524(7563), 47–53. https://doi.org/10.1038/nature14664.
Sethi, T., Rintoul, R. C., Moore, S. M., Mackinnon, A. C., Salter, D., Choo, C., Chilvers, E. R., Dransfield, I., Donnelly, S. C., Strieter, R., & Haslett, C. (1999). Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: A mechanism for small cell lung cancer growth and drug resistance in vivo. Nature Medicine, 5(6), 662–668. https://doi.org/10.1038/9511.
Hodkinson, P. S., Mackinnon, A. C., & Sethi, T. (2007). Extracellular matrix regulation of drug resistance in small‐cell lung cancer. International Journal of Radiation Biology, 83(11‐12), 733–741. https://doi.org/10.1080/09553000701570204.
Tsurutani, J., West, K. A., Sayyah, J., Gills, J. J., & Dennis, P. A. (2005). Inhibition of the phosphatidylinositol 3‐kinase/Akt/mammalian target of rapamycin pathway but not the MEK/ERK pathway attenuates laminin‐mediated small cell lung cancer cellular survival and resistance to imatinib mesylate or chemotherapy. Cancer Research, 65(18), 8423–8432. https://doi.org/10.1158/0008‐5472.CAN‐05‐0058.
Hodkinson, P. S., Elliott, T., Wong, W. S., Rintoul, R. C., Mackinnon, A. C., Haslett, C., & Sethi, T. (2006). ECM overrides DNA damage‐induced cell cycle arrest and apoptosis in small‐cell lung cancer cells through beta1 integrin‐dependent activation of PI3‐kinase. Cell Death and Differentiation, 13(10), 1776–1788. https://doi.org/10.1038/sj.cdd.4401849.
Kraus, A. C., Ferber, I., Bachmann, S. O., Specht, H., Wimmel, A., Gross, M. W., Schlegel, J., Suske, G., & Schuermann, M. (2002). In vitro chemo‐ and radio‐resistance in small cell lung cancer correlates with cell adhesion and constitutive activation of AKT and MAP kinase pathways. Oncogene, 21(57), 8683–8695. https://doi.org/10.1038/sj.onc.1205939.
Kijima, T., Maulin, G., Ma, P. C., Madhiwala, P., Schaefer, E., & Salgia, R. (2003). Fibronectin enhances viability and alters cytoskeletal functions (with effects on the phosphatidylinositol 3‐kinase pathway) in small cell lung cancer. Journal of Cellular and Molecular Medicine, 7(2), 157–164. https://doi.org/10.1111/j.1582‐4934.2003.tb00214.x.
Tagliabue, E., Martignone, S., Mastroianni, A., Menard, S., Pellegrini, R., & Colnaghi, M. I. (1991). Laminin receptors on SCLC cells. British Journal of Cancer Supplement, 14, 83–85. https://www.ncbi.nlm.nih.gov/pubmed/1645580.
Hoshino, A., Costa‐Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A. E., Ararso, Y., … Lyden, D. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335. https://doi.org/10.1038/nature15756.
Al Halawani, A., Mithieux, S. M., Yeo, G. C., Hosseini‐Beheshti, E., & Weiss, A. S. (2022). Extracellular vesicles: Interplay with the extracellular matrix and modulated cell responses. International Journal of Molecular Sciences, 23(6), 3389. https://doi.org/10.3390/ijms23063389.
Chanda, D., Otoupalova, E., Hough, K. P., Locy, M. L., Bernard, K., Deshane, J. S., Sanderson, R. D., Mobley, J. A., & Thannickal, V. J. (2019). Fibronectin on the surface of extracellular vesicles mediates fibroblast invasion. American Journal of Respiratory Cell and Molecular Biology, 60(3), 279–288. https://doi.org/10.1165/rcmb.2018‐0062OC.
Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A., & Weaver, A. M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 6, 7164. https://doi.org/10.1038/ncomms8164.
Rieu, S., Géminard, C., Rabesandratana, H., Sainte‐Marie, J., & Vidal, M. (2000). Exosomes released during reticulocyte maturation bind to fibronectin via integrin alpha4beta1. European Journal of Biochemistry, 267(2), 583–590. https://doi.org/10.1046/j.1432‐1327.2000.01036.x.
Purushothaman, A., Bandari, S. K., Liu, J., Mobley, J. A., Brown, E. E., & Sanderson, R. D. (2016). Fibronectin on the surface of myeloma cell‐derived exosomes mediates exosome‐cell interactions. Journal of Biological Chemistry, 291(4), 1652–1663. https://doi.org/10.1074/jbc.M115.686295.
Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. Journal of Biological Chemistry, 290(8), 4545–4551. https://doi.org/10.1074/jbc.C114.617662.
Singh, A., Fedele, C., Lu, H., Nevalainen, M. T., Keen, J. H., & Languino, L. R. (2016). Exosome‐mediated transfer of αvβ3 integrin from tumorigenic to nontumorigenic cells promotes a migratory phenotype. Molecular Cancer Research, 14(11), 1136–1146. https://doi.org/10.1158/1541‐7786.Mcr‐16‐0058.
Perez‐Riverol, Y., Bai, J., Bandla, C., García‐Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D. J., Prakash, A., Frericks‐Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A., & Vizcaíno, J. A. (2022). The PRIDE database resources in 2022: A hub for mass spectrometry‐based proteomics evidences. Nucleic Acids Research, 50(D1), D543–D552. https://doi.org/10.1093/nar/gkab1038.
معلومات مُعتمدة: F32 CA217064 United States CA NCI NIH HHS; P30 CA068485 United States CA NCI NIH HHS; U01 CA224276 United States CA NCI NIH HHS; U54 CA217450 United States CA NCI NIH HHS; F32 CA217064 United States CA NCI NIH HHS; P30 CA068485 United States CA NCI NIH HHS; U01 CA224276 United States CA NCI NIH HHS; U54 CA217450 United States CA NCI NIH HHS
فهرسة مساهمة: Keywords: ECM; SCLC; extracellular vesicles; proteomics; tumor heterogeneity
المشرفين على المادة: 0 (Extracellular Matrix Proteins)
0 (Laminin)
تواريخ الأحداث: Date Created: 20231105 Date Completed: 20240603 Latest Revision: 20240603
رمز التحديث: 20240603
DOI: 10.1002/pmic.202300030
PMID: 37926756
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-9861
DOI:10.1002/pmic.202300030