دورية أكاديمية

New tetrazolopyrrolidine-1,2,3-triazole analogues as potent anticancer agents: design, synthesis and molecular docking studies.

التفاصيل البيبلوغرافية
العنوان: New tetrazolopyrrolidine-1,2,3-triazole analogues as potent anticancer agents: design, synthesis and molecular docking studies.
المؤلفون: Gandham SK; Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India., Kudale AA; Research and Development, ASolution Pharmaceuticals Pvt Ltd, Dist. Thane, Ambernath, Maharashtra, 421506, India., Allaka TR; Department of Chemistry, Centre for Chemical Sciences and Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India., Chepuri K; Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India., Jha A; Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University), Gandhi Nagar, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India. ajhamani@gitam.edu.
المصدر: Molecular diversity [Mol Divers] 2023 Nov 08. Date of Electronic Publication: 2023 Nov 08.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: ESCOM Science Publishers Country of Publication: Netherlands NLM ID: 9516534 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-501X (Electronic) Linking ISSN: 13811991 NLM ISO Abbreviation: Mol Divers Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Leiden, The Netherlands : ESCOM Science Publishers, c1995-
مستخلص: 1,2,3-Triazole and tetrazole derivatives bearing pyrrolidines are found to exhibit notable biological activity and have become useful scaffolds in medicinal chemistry for application in lead discovery and optimization. We report design, synthesis and molecular docking studies of tetrazolyl-1,2,3-triazole derivatives (7a-i) bearing pyrrolidine moiety and evaluating their anticancer activity against four cancer cell lines viz. Hela, MCF-7, HCT-116 and HepG2. The structures of the new compounds were ascertained by spectral means IR, NMR: 1 H & 13 C and Mass spectrum. From the studies compounds7a and 7i exhibited significant anticancer activity against the Hela cell line with IC 50  = 0.32 ± 1.00, 1.80 ± 0.22 μM when compared to reference drug Doxorubicin (IC 50  = 2.34 ± 0.11 μM), whereas 7h, 7i, and 7b were found to be active against MCF-7, HCT-116 and HepG2 cell lines with IC 50  = 3.20 ± 1.40, 1.38 ± 0.06 and 0.97 ± 0.12 μM respectively. Notably 7a exhibited highest conventional hydrogen bondings TyrA:40, SerA:17, LysA:117, AlaA:146, Tyr218 with 3HB4and SerA:17, LysA:117, AlaA:146, TyrA:40 with 6IBZ and docking energy - 10.85, - 8.21 kcal/mol respectively. These compounds were further evaluated for their ADMET and physicochemical properties by using SwissADME. The results of the in vitro and in silico studies suggest that the tetrazole incorporated pyrrolidine-triazoles may possess the ideal structural requirements for further developing new anticancer agents.
(© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DMJ (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127:2893–2917. https://doi.org/10.1002/ijc.25516&GLOBOCAN2020:NewGlobalCancerData. (PMID: 10.1002/ijc.25516&GLOBOCAN2020:NewGlobalCancerData21351269)
Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627. https://doi.org/10.1146/annurev.med.53.082901.103929. (PMID: 10.1146/annurev.med.53.082901.10392911818492)
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492. (PMID: 10.3322/caac.2149230207593)
Burdall SA, Speirs MR (2003) Spearseast cancer cell lines: friend or foe. Breast Cancer Res 5:89–95. https://doi.org/10.1186/bcr577. (PMID: 10.1186/bcr57712631387154155)
Sweeney EE, Mcdaniel RE, Maximov PY, Fan P, Craig V (2013) Models and mechanisms of acquired antihormone resistance in breast cancer: significant clinical progress despite limitations. Horm Mol Biol Clin Investig 9:143–163. https://doi.org/10.1515/hmbci-2011-0004. (PMID: 10.1515/hmbci-2011-0004)
Zur Hausen H (1989) Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers. Cancer Res 49:4677–4681. (PMID: 2547512)
Wani MY, Bhat AR, Azam A, Choi I, Athar F (2012) Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives. Eur J Med Chem 48:313–320. https://doi.org/10.1016/j.ejmech.2011.12.033. (PMID: 10.1016/j.ejmech.2011.12.03322236470)
OrnellaM AM, Mariateresa G, TraceyP ValentinaB, Antonio C, Pierluigi C, Giovanni S, EttoreN AAG, Gian CT (2011) Replacement of the double bond of antitubulin chalcones with triazoles and tetrazoles: Synthesis and biological evaluation. Bioorg Med Chem Lett 21:764–768. https://doi.org/10.1016/j.bmcl.2010.11.113. (PMID: 10.1016/j.bmcl.2010.11.113)
Sabbah M, Fontaine F, Grand L, Boukraa M, Efrit ML, Doutheau A, Soulre L, Queneau Y (2012) Synthesis and biological evaluation of new N-acyl-homoserine-lactone analogues, based on triazole and tetrazole scaffolds, acting as LuxR-dependent quorum sensing modulators. Bioorg Med Chem 20:4727–4736. https://doi.org/10.1016/j.bmc.2012.06.007. (PMID: 10.1016/j.bmc.2012.06.00722748707)
Noda K, Saad Y, Kinoshita A, Boyle TP, Graham RM, Husain A, Karnik SS (1995) Tetrazole and carboxylate groups of angiotensin receptor antagonists bind to the same subsite by different mechanisms. J Biol Chem 270:2284–2289. https://doi.org/10.1074/jbc.270.5.2284. (PMID: 10.1074/jbc.270.5.22847530721)
El-Sayed WA, Abdel Megeid RE, Abbas HA (2011) Synthesis and antimicrobial activity of new 1-[(tetrazol-5-yl)methyl]indole derivatives, their 1,2,4-triazole thioglycosides and acyclic analogs. Arch Pharm Res 34:1085–1096. https://doi.org/10.1007/s12272-011-0706-y. (PMID: 10.1007/s12272-011-0706-y21811915)
Upadhayaya RS, Sinha N, Jain S, Kishore N, Chandra R, Arora S (2004) Optically active antifungal azoles: synthesis and antifungal activity of (2R,3S)-2-(2,4-difluorophenyl)-3-(5-{2-[4-aryl-piperazin-1-yl]-ethyl}-tetrazol-2-yl/1-yl)-1-[1,2,4]-triazol-1-yl-butan-2-ol. Bioorg Med Chem 12:2225–2238. https://doi.org/10.1016/j.bmc.2004.02.014. (PMID: 10.1016/j.bmc.2004.02.01415080922)
Dougherty AM, Guo H, Westby G, LiuY SE, Guo J, Mehta A, Norton P, Gu B, Block T (2007) A substituted tetrahydro-tetrazolo-pyrimidine is a specific and novel inhibitor of hepatitis b virus surface antigen secretion. Antimicrob Agents Chemother 51:4427–4437. https://doi.org/10.1128/aac.00541-07. (PMID: 10.1128/aac.00541-07178759902167973)
Gundugola AS, Chandra KL, Perchellet EM, Waters AM, Perchellet JPH, Rayat S (2010) Synthesis and antiproliferative evaluation of 5-oxo and 5-thio derivatives of 1,4-diaryl tetrazoles. Bioorg Med Chem Lett 20:3920–3924. https://doi.org/10.1016/j.bmcl.2010.05.012. (PMID: 10.1016/j.bmcl.2010.05.012)
Wang SQ, Wang YF, Xu Z (2019) Tetrazole hybrids and their antifungal activities. Eur J Med Chem 170:225–234. https://doi.org/10.1016/j.ejmech.2019.03.023. (PMID: 10.1016/j.ejmech.2019.03.02330904780)
Gao C, Chang L, Xu Z, Yan XF, Ding C, Zhao F, Wu X, Feng LS (2018) Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur J Med Chem 163:404–412. https://doi.org/10.1016/j.ejmech.2018.12.001. (PMID: 10.1016/j.ejmech.2018.12.001)
Purohit P, Pandey AK, Singh D, Chouhan PS, Ramalingam KM, Goyal N, Lal J, Chauhan PM (2017) An insight into tetrahydro-β–tetrazole hybrids: synthesis and bio evaluation as potent anti-leishmanial agents. Med Chem Commun 8:1824–1834. https://doi.org/10.1039/C7MD00125H. (PMID: 10.1039/C7MD00125H)
Kaushik N, Kumar N, Kumar A (2016) Synthesis, antioxidant and antidiabetic activity of 1-[(5-Substituted phenyl)-4,5-dihydro-1H-pyrazol-3-yl]-5-phenyl-1H-tetrazole. Indian J Sci 78:352–359. https://doi.org/10.4172/pharmaceutical-sciences.1000125. (PMID: 10.4172/pharmaceutical-sciences.1000125)
McGuire JJ, Russell CA, Bolanowska WE, Freitag CM, Jones CS, Kalman TI (1990) Biochemical and growth inhibition studies of methotrexate and aminopterin analogues containing a tetrazole ring in place of the γ-carboxyl group. Cancer Res 50:1726–1731. (PMID: 2306727)
Song MX, Deng XQ (2018) Recent developments on triazole nucleus in anticonvulsant compounds: a review. J Enzyme Inhib Med Chem 33:453–478. https://doi.org/10.1080/14756366.2017.1423068. (PMID: 10.1080/14756366.2017.14230686010125)
Jordão AK, Ferreira VF, Souza TML, De Souza Faria GG, MacHado V, Abrantes JL, De Souza MCBV, Cunha AC (2011) Synthesis and anti-HSV1 activity of new 1,2,3-triazole derivatives. Bioorganic Med Chem 19:1860–1865. https://doi.org/10.1016/j.bmc.2011.02.007. (PMID: 10.1016/j.bmc.2011.02.007)
BoechatN FerreiraVF, FerreiraSB FMDLG, Da Silva FDC, Bastos MM, Costa MDS, Lourenço MCS, Pinto AC, Krettli AU, Aguiar AC, Teixeira BM, Da Silva NV, Martins PRC, Bezerra FAFM, Camilo ALS, Da Silva GP, Costa CCP (2011) Novel 1,2,3-triazole derivatives for use against mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J Med Chem 54:5988–5999. https://doi.org/10.1021/jm2003624. (PMID: 10.1021/jm2003624)
Mady MF, Awad GEA, Jørgensen KB (2014) Ultrasound-assisted synthesis of novel 1,2,3-triazoles coupled diaryl sulfone moieties by the CuAAC reaction, and biological evaluation of them as antioxidant and antimicrobial agents. Eur J Med Chem 84:433–443. https://doi.org/10.1016/j.ejmech.2014.07.042. (PMID: 10.1016/j.ejmech.2014.07.04225038485)
Garudachari B, Isloor AM, Satyanarayana MN, Fun HK, Hegde G (2014) Click chemistry approach: regioselective one-pot synthesis of some new 8trifluoromethylquinoline based 1,2,3-triazoles as potent antimicrobial agents. Eur J Med Chem 74:324–332. https://doi.org/10.1016/j.ejmech.2014.01.008. (PMID: 10.1016/j.ejmech.2014.01.00824486415)
Bollu R, Palem JD, Bantu R, Guguloth V, Nagarapu L, Polepalli S, Jain N (2014) Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur J Med Chem 89:138–146. https://doi.org/10.1016/j.ejmech.2014.10.051. (PMID: 10.1016/j.ejmech.2014.10.05125462234)
Suresh M, Kumar AS, Gorle S, Singh M, Lavanya P, Jonnalagadda SB (2013) Synthesis and antioxidant activity of 1,2,4-triazole linked thieno[2,3-d]pyrimidine derivatives. Lett Drug Des Discov 10:186–193. https://doi.org/10.2174/157018013804725152. (PMID: 10.2174/157018013804725152)
Kharb R, Sharma PC, Yar MS (2011) Pharmacological significance of triazole scaffold. J Enzy Inhib Med Chem 26:1–21. https://doi.org/10.3109/14756360903524304. (PMID: 10.3109/14756360903524304)
Milton NG (2001) Inhibition of catalase activity with 3-amino-triazole enhances the cytotoxicity of the Alzheimer’s amyloid-beta peptide. Neurotoxicology 22:767–774. https://doi.org/10.1016/S0161-813X(01)00064-X. (PMID: 10.1016/S0161-813X(01)00064-X11829410)
Varvaresou A, Siatra-Papastaikoudi T, Tsotinis A, Tsantili-Kakoulidou A, Vamvakides A (1998) Synthesis, lipophilicity and biological evaluation of indole-containing derivatives of 1,3,4-thiadiazole and 1,2,4-triazole. Farmaco 53:320–326. https://doi.org/10.1016/S0014-827X(98)00024-X. (PMID: 10.1016/S0014-827X(98)00024-X9679281)
Turan-Zitouni G, Kaplancikli ZA, Ozdemir A, Chevallet P, Kandilci HB, Gumusel B (2007) Studies on 1,2,4-triazole derivatives as potential anti-inflammatory agents. Arch Pharm (Weinheim) 340:586–590. https://doi.org/10.1002/ardp.200700134. (PMID: 10.1002/ardp.20070013417994651)
Berk B, Aktay G, Yesilada E, Ertan M (2001) Synthesis and pharmacological activities of some new 2-[1-(6-methoxy-2-naphthyl)ethyl]-6-(substituted)benzylidene thiazolo[3,2-b]-1,2,4-triazole-5(6H)-one derivatives. Pharmazie 56:613–616. https://doi.org/10.1002/chin.200147107. (PMID: 10.1002/chin.20014710711534335)
Zhan P, Chen X, Li X, Li D, Tian Y, Chen W, Pannecouque C, Clercq E, Liu X (2011) Design, synthesis and biological evaluation of Novel 2-(2-(2,4-Dichloro phenyl)-2H-1,2,4-triazol-3-ylthio)-N-arylacetamides As Potent HIV-1 inhibitors. Eur J Med Chem 46:5039–5045. https://doi.org/10.1016/j.ejmech.2011.08.011. (PMID: 10.1016/j.ejmech.2011.08.01121872971)
Li YL, Xu WF (2004) Design, synthesis, and activity of caffeoyl pyrrolidine derivatives as potential gelatinase inhibitors. Bioorg Med Chem 12:5171–5180. https://doi.org/10.1016/j.bmc.2004.07.025. (PMID: 10.1016/j.bmc.2004.07.02515351400)
LiX LY, Xu WF (2006) Design, synthesis, and evaluation of novel galloyl pyrrolidine derivatives as potential anti-tumor agents. Bioorg Med Chem 14:1287–1293. https://doi.org/10.1016/j.bmc.2005.09.031. (PMID: 10.1016/j.bmc.2005.09.031)
Thotla K, Noolea VG, Kedikaa B, Krishna Reddy CH (2020) Synthesis of 5-{[(1-Aryl-1H-1,2,3-triazol-4-yl)methyl]sulfanyl}-1-phenyl-1H-tetrazoles. Russian J Org Chem 56:1077–1081. https://doi.org/10.1134/S1070428020060172. (PMID: 10.1134/S1070428020060172)
Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2016) Cell Viability Assays, Eli Lilly & Company and the National Center for Advancing Translational Sciences. https://www.ncbi.nlm.nih.gov/books/NBK144065/pdf/Bookshelf_NBK144065.pdf.
Bose DS, Idrees M, Jakka NM, Rao JV (2010) Diversity-oriented synthesis of quinolines via Friedlander annulation reaction under mild catalytic conditions. J Comb Chem 12:100–110. https://doi.org/10.1021/cc900129t. (PMID: 10.1021/cc900129t20000618)
Abu Bakar MF, Maryati M, Rahmat A, Burr SA, Fry JR (2010) Cytotoxicity, cell cycle arrest, and apoptosis in breast cancer cell lines exposed to an extract of the seed kernel of Mangifera pajang (bambangan). Food Chem Toxicol 48:1688–1697. https://doi.org/10.1016/j.fct.2010.03.046. (PMID: 10.1016/j.fct.2010.03.04620363279)
Mazumdar M, Fournier D, Zhu DW, Cadot C, Poirier D, Lin SX (2009) Binary and ternary crystal structure analyses of a novel inhibitor with 17β-HSD type 1: a lead compound for breast cancer therapy. Biochem J 424:357–366. https://doi.org/10.1042/BJ20091020. (PMID: 10.1042/BJ2009102019929851)
Boutard N, BialasA SA, Guzik P, Banaszak K, Biela A, Bien M, Buda A, Bugaj B, Cieluch E, Cierpich A, Dudek L, Eggenweiler HM, Fogt J, Gaik M, Gondola A, Jakubiec K, Jurzak M, Kitlinska A, Kowalczyk P, Kujawa M, KwiecinskaK LM, Lindemann R, Maciuszek M, Mikulski M, Niedziejko P, Obara A, Pawlik H, Rzymski T, Sieprawska-Lupa M, Sowinska M, Szeremeta-Spisak J, Stachowicz A, Tomczyk MM, Wiklik K, Wloszczak L, Ziemianska S, Zarebski A, Brzozka K, Nowak M, Fabritius CH (2019) Synthesis of amide and sulfonamide substituted N-aryl 6-aminoquinoxalines as PFKFB3 inhibitors with improved physicochemical properties. Bioorg Med Chem Lett 29:646–653. https://doi.org/10.1016/j.bmcl.2018.12.034. (PMID: 10.1016/j.bmcl.2018.12.03430626557)
ACD/ChemSketch, version 2020.2.1 (2021) Advanced Chemistry Development, Inc., Toronto, www.acdlabs.com .
O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open babel: an open chemical toolbox. J Chem Inform 3:33. https://doi.org/10.1186/1758-2946-3-33. (PMID: 10.1186/1758-2946-3-33)
Askowski RA, Jabłońska J, Pravda L, Varekova RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27:129–134. https://doi.org/10.1002/pro.3289. (PMID: 10.1002/pro.3289)
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16:2785–2791. https://doi.org/10.1002/jcc.21256. (PMID: 10.1002/jcc.21256)
Antoine D, Olivier M, Vincent Z (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717. (PMID: 10.1038/srep42717)
Bakchi B, Dileep Krishna A, Sreecharan E, Jaya Ganesh VB, Niharika M, Maharshi S, Srinivasa Babu P, Dilep Kumar S, Richie RB, Afzal BS (2022) An overview on applications of SwissADME web tool in the design and development of anticancer, antitubercular and antimicrobial agents: a medicinal chemist’s perspective. J Mol Struct 1259:132712. https://doi.org/10.1016/j.molstruc.2022.132712. (PMID: 10.1016/j.molstruc.2022.132712)
Antoine D, Olivier M, Vincent Z (2014) iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model 54:3284–3301. https://doi.org/10.1021/ci500467k. (PMID: 10.1021/ci500467k)
فهرسة مساهمة: Keywords: 1,2,3-Triazoles; Anticancer activity; Docking analysis; PDB; SwissADME; Tetrazoles
تواريخ الأحداث: Date Created: 20231108 Latest Revision: 20231108
رمز التحديث: 20240628
DOI: 10.1007/s11030-023-10762-z
PMID: 37938509
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-501X
DOI:10.1007/s11030-023-10762-z