دورية أكاديمية

From premature birth to premature kidney disease: does accelerated aging play a role?

التفاصيل البيبلوغرافية
العنوان: From premature birth to premature kidney disease: does accelerated aging play a role?
المؤلفون: Sanderson KR; Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA. keia_sanderson@med.unc.edu., Wekon-Kemeni C; Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.; Division of Pediatric Nephrology, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA., Charlton JR; Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA.
المصدر: Pediatric nephrology (Berlin, Germany) [Pediatr Nephrol] 2024 Jul; Vol. 39 (7), pp. 2001-2013. Date of Electronic Publication: 2023 Nov 10.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8708728 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-198X (Electronic) Linking ISSN: 0931041X NLM ISO Abbreviation: Pediatr Nephrol Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Springer International
Original Publication: Berlin : Springer International, c1987-
مواضيع طبية MeSH: Premature Birth*/epidemiology , Aging, Premature*/etiology , Aging, Premature*/physiopathology , Renal Insufficiency, Chronic*/etiology , Renal Insufficiency, Chronic*/physiopathology , Renal Insufficiency, Chronic*/therapy, Humans ; Infant, Newborn ; Aging/physiology ; Pregnancy ; Female ; Risk Factors
مستخلص: As the limits of fetal viability have increased over the past 30 years, there has been a growing body of evidence supporting the idea that chronic disease should be taken into greater consideration in addition to survival after preterm birth. Accumulating evidence also suggests there is early onset of biologic aging after preterm birth. Similarly, chronic kidney disease (CKD) is also associated with a phenotype of advanced biologic age which exceeds chronologic age. Yet, significant knowledge gaps remain regarding the link between premature biologic age after preterm birth and kidney disease. This review summarizes the four broad pillars of aging, the evidence of premature aging following preterm birth, and in the setting of CKD. The aim is to provide additional plausible biologic mechanisms to explore the link between preterm birth and CKD. There is a need for more research to further elucidate the biologic mechanisms of the premature aging paradigm and kidney disease after preterm birth. Given the emerging research on therapies for premature aging, this paradigm could create pathways for prevention of advanced CKD.
(© 2023. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
References: Division of Reproductive Health Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion (2022) Preterm birth. Centers for Disease Control and Prevention. https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm . Accessed 30 Oct 2023.
Walani SR (2020) Global burden of preterm birth. Int J Gynaecol Obstet 150:31–33. https://doi.org/10.1002/ijgo.131953. (PMID: 10.1002/ijgo.13195332524596)
Costeloe KL, Hennessy EM, Haider S, Stacey F, Marlow N, Draper ES (2012) Short term outcomes after extreme preterm birth in England: comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 345:e7976. https://doi.org/10.1136/bmj.e7976. (PMID: 10.1136/bmj.e7976232128813514472)
Van Lieshout RJ, McGowan PO, de Vega WC, Savoy CD, Morrison KM, Saigal S, Mathewson KJ, Schmidt LA (2021) Extremely low birth weight and accelerated biological aging. Pediatrics 147:e2020001230. https://doi.org/10.1542/peds.2020-001230. (PMID: 10.1542/peds.2020-00123034001643)
Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580. https://doi.org/10.1016/s0140-6736(89)90710-1. (PMID: 10.1016/s0140-6736(89)90710-12570282)
Crump C, Sundquist J, Winkleby MA, Sundquist K (2019) Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ 365:l1346. https://doi.org/10.1136/bmj.l1346. (PMID: 10.1136/bmj.l1346310433746490674)
White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54:248–261. https://doi.org/10.1053/j.ajkd.2008.12.042. (PMID: 10.1053/j.ajkd.2008.12.04219339091)
Gjerde A, Reisæter AV, Skrunes R, Marti HP, Vikse BE (2020) Intrauterine growth restriction and risk of diverse forms of kidney disease during the first 50 years of life. Clin J Am Soc Nephrol 15:1413–1423. https://doi.org/10.2215/cjn.04080320. (PMID: 10.2215/cjn.04080320328168337536758)
Raju TNK, Pemberton VL, Saigal S, Blaisdell CJ, Moxey-Mims M, Buist S (2017) Long-term healthcare outcomes of preterm birth: an executive summary of a conference sponsored by the National Institutes of Health. J Pediatr 181:309-318.e1. https://doi.org/10.1016/j.jpeds.2016.10.015. (PMID: 10.1016/j.jpeds.2016.10.01527806833)
Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276. (PMID: 10.1038/nrneph.2015.3256436644412815)
Parkinson JRC, Emsley R, Adkins JLT, Longford N, Ozanne SE, Holmes E, Modi N (2020) Clinical and molecular evidence of accelerated ageing following very preterm birth. Pediatr Res 87:1005–1010. (PMID: 10.1038/s41390-019-0709-931812156)
Franceschi C, Garagnani P, Gensous N, Bacalini MG, Conte M, Salvioli S (2019) Accelerated bio-cognitive aging in Down syndrome: state of the art and possible deceleration strategies. Aging Cell 18:e12903. (PMID: 10.1111/acel.12903307687546516152)
Ness KK, Kirkland JL, Gramatges MM, Wang Z, Kundu M, McCastlain K, Li-Harms X, Zhang J, Tchkonia T, Pluijm SMF (2018) Premature physiologic aging as a paradigm for understanding increased risk of adverse health across the lifespan of survivors of childhood cancer. J Clin Oncol 36:2206–2215. https://doi.org/10.1200/JCO.2017.76.7467. (PMID: 10.1200/JCO.2017.76.7467298741326553838)
Salminen A, Kaarniranta K, Kauppinen A (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging 4:166–175. https://doi.org/10.18632/aging.100444. (PMID: 10.18632/aging.100444224119343348477)
Barzilai N, Huffman DM, Muzumdar RH, Bartke A (2012) The critical role of metabolic pathways in aging. Diabetes 61:1315–1322. https://doi.org/10.2337/db11-1300. (PMID: 10.2337/db11-1300226187663357299)
Pamukcu B, Lip GY, Devitt A, Griffiths H, Shantsila E (2010) The role of monocytes in atherosclerotic coronary artery disease. Ann Med 42:394–403. https://doi.org/10.3109/07853890.2010.497767. (PMID: 10.3109/07853890.2010.49776720568979)
Králová Lesná I, Poledne R, Fronek J, Králová A, Sekerková A, Thieme F, Pitha J (2015) Macrophage subsets in the adipose tissue could be modified by sex and the reproductive age of women. Atherosclerosis 241:255–258. https://doi.org/10.1016/j.atherosclerosis.2015.03.018. (PMID: 10.1016/j.atherosclerosis.2015.03.01825795161)
Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447. https://doi.org/10.1016/j.cell.2005.01.027. (PMID: 10.1016/j.cell.2005.01.02715734677)
Engin AB, Engin A (2021) The connection between cell fate and telomere. Adv Exp Med Biol 1275:71–100. https://doi.org/10.1007/978-3-030-49844-3_3. (PMID: 10.1007/978-3-030-49844-3_333539012)
Farrukh S, Baig S, Hussain R, Imad R, Khalid M (2022) Parental genetics communicate with intrauterine environment to reprogram newborn telomeres and immunity. Cells 11:3777. https://doi.org/10.3390/cells11233777. (PMID: 10.3390/cells11233777364970399735452)
Zhao J, Miao K, Wang H, Ding H, Wang DW (2013) Association between telomere length and type 2 diabetes mellitus: a meta-analysis. PLoS One 8:e79993. https://doi.org/10.1371/journal.pone.0079993.
Ma H, Zhou Z, Wei S, Liu Z, Pooley KA, Dunning AM, Svenson U, Roos G, Hosgood HD III, Shen M (2011) Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS One 6:e20466. https://doi.org/10.1371/journal.pone.0020466.
Haycock PC, Heydon EE, Kaptoge S, Butterworth AS, Thompson A, Willeit P (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 349:g4227. https://doi.org/10.1136/bmj.g4227.
Pilzecker B, Buoninfante OA, van den Berk P, Lancini C, Song J-Y, Citterio E, Jacobs H (2017) DNA damage tolerance in hematopoietic stem and progenitor cells in mice. Proc Natl Acad Sci 114:E6875–E6883. https://doi.org/10.1073/pnas.1706508114. (PMID: 10.1073/pnas.1706508114287610015565453)
Spehar K, Pan A, Beerman I (2020) Restoring aged stem cell functionality: current progress and future directions. Stem Cells 38:1060–1077. https://doi.org/10.1002/stem.3234. (PMID: 10.1002/stem.323432473067)
Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600. https://doi.org/10.1056/NEJMoa022287. (PMID: 10.1056/NEJMoa02228712584367)
Kirkland JL, Tchkonia T (2017) Cellular senescence: a translational perspective. EBioMedicine 21:21–28. https://doi.org/10.1016/j.ebiom.2017.04.013. (PMID: 10.1016/j.ebiom.2017.04.013284161615514381)
Ogrodnik M (2021) Cellular aging beyond cellular senescence: markers of senescence prior to cell cycle arrest in vitro and in vivo. Aging Cell 20:e13338. https://doi.org/10.1111/acel.13338. (PMID: 10.1111/acel.13338337112118045927)
Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22:75–95. https://doi.org/10.1038/s41580-020-00314-w. (PMID: 10.1038/s41580-020-00314-w33328614)
Smitherman AB, Wood WA, Mitin N, Ayer Miller VL, Deal AM, Davis IJ, Blatt J, Gold SH, Muss HB (2020) Accelerated aging among childhood, adolescent, and young adult cancer survivors is evidenced by increased expression of p16(INK4a) and frailty. Cancer 126:4975–4983. https://doi.org/10.1002/cncr.33112. (PMID: 10.1002/cncr.3311232830315)
Kajdy A, Modzelewski J, Cymbaluk-Płoska A, Kwiatkowska E, Bednarek-Jędrzejek M, Borowski D, Stefańska K, Rabijewski M, Torbé A, Kwiatkowski S (2021) Molecular pathways of cellular senescence and placental aging in late fetal growth restriction and stillbirth. Int J Mol Sci 22:4186. https://doi.org/10.3390/ijms22084186. (PMID: 10.3390/ijms22084186339195028072706)
Richter T, von Zglinicki T (2007) A continuous correlation between oxidative stress and telomere shortening in fibroblasts. Exp Gerontol 42:1039–1042. https://doi.org/10.1016/j.exger.2007.08.005. (PMID: 10.1016/j.exger.2007.08.00517869047)
Girchenko P, Lahti J, Czamara D, Knight AK, Jones MJ, Suarez A, Hämäläinen E, Kajantie E, Laivuori H, Villa PM, Reynolds RM, Kobor MS, Smith AK, Binder EB, Räikkönen K (2017) Associations between maternal risk factors of adverse pregnancy and birth outcomes and the offspring epigenetic clock of gestational age at birth. Clin Epigenetics 9:49. https://doi.org/10.1186/s13148-017-0349-z. (PMID: 10.1186/s13148-017-0349-z285032125422977)
Parrinello S, Coppe J-P, Krtolica A, Campisi J (2005) Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. J Cell Sci 118:485–496. https://doi.org/10.1242/jcs.01635. (PMID: 10.1242/jcs.0163515657080)
Duke JW, Lovering AT, Goss KN (2020) Premature aging and increased risk of adult cardiorespiratory disease after extreme preterm birth. Getting to the heart (and lungs) of the matter. Am J Respir Crit Care Med 202:319–320. https://doi.org/10.1164/rccm.202004-1437ED. (PMID: 10.1164/rccm.202004-1437ED324071627397806)
Paz AA, Arenas GA, Castillo-Galán S, Peñaloza E, Cáceres-Rojas G, Suazo J, Herrera EA, Krause BJ (2019) Premature vascular aging in guinea pigs affected by fetal growth restriction. Int J Mol Sci 20:3474. https://doi.org/10.3390/ijms20143474. (PMID: 10.3390/ijms20143474313111326678381)
Flahault A, Oliveira Fernandes R, De Meulemeester J, Ravizzoni Dartora D, Cloutier A, Gyger G, El-Jalbout R, Bigras J-L, Luu TM, Nuyt AM (2020) Arterial structure and stiffness are altered in young adults born preterm. Arterioscler Thromb Vasc Biol 40:2548–2556. https://doi.org/10.1161/ATVBAHA.120.315099. (PMID: 10.1161/ATVBAHA.120.31509932847389)
Chainoglou A, Sarafidis K, Chrysaidou K, Farmaki E, Kollios K, Economou M, Kotsis V, Stabouli S (2022) Arterial stiffness and nocturnal hypertension in preterm children and adolescents. J Hypertens 40:1751–1757. https://doi.org/10.1097/hjh.0000000000003209. (PMID: 10.1097/hjh.000000000000320935881434)
Morrison KM, Gunn E, Guay S, Obeid J, Schmidt LA, Saigal S (2021) Grip strength is lower in adults born with extremely low birth weight compared to term-born controls. Pediatr Res 89:996–1003. https://doi.org/10.1038/s41390-020-1012-5. (PMID: 10.1038/s41390-020-1012-532555537)
Lovering AT, Elliott JE, Laurie SS, Beasley KM, Gust CE, Mangum TS, Gladstone IM, Duke JW (2014) Ventilatory and sensory responses in adult survivors of preterm birth and bronchopulmonary dysplasia with reduced exercise capacity. Ann Am Thorac Soc 11:1528–1537. https://doi.org/10.1513/AnnalsATS.201312-466OC. (PMID: 10.1513/AnnalsATS.201312-466OC25380058)
Mathewson KJ, McGowan PO, de Vega WC, Morrison KM, Saigal S, Van Lieshout RJ, Schmidt LA (2021) Cumulative risks predict epigenetic age in adult survivors of extremely low birth weight. Dev Psychobiol 63:e22222. https://doi.org/10.1002/dev.22222. (PMID: 10.1002/dev.2222234964497)
Martens DS, Sleurs H, Dockx Y, Rasking L, Plusquin M, Nawrot TS (2022) Association of newborn telomere length with blood pressure in childhood. JAMA Netw Open 5:e2225521. https://doi.org/10.1001/jamanetworkopen.2022.25521. (PMID: 10.1001/jamanetworkopen.2022.25521359302839356312)
Raqib R, Alam DS, Sarker P, Ahmad SM, Ara G, Yunus M, Moore SE, Fuchs G (2007) Low birth weight is associated with altered immune function in rural Bangladeshi children: a birth cohort study. Am J Clin Nutr 85:845–852. https://doi.org/10.1093/ajcn/85.3.845. (PMID: 10.1093/ajcn/85.3.84517344508)
Ali MF, Venkatarayappa SKB, Benny M, Rojas C, Yousefi K, Shehadeh LA, Kulandavelu S, Sharma M, Da Silva N, Freundlich M, Abitbol CL, DeFreitas MJ, Young KC (2020) Effects of Klotho supplementation on hyperoxia-induced renal injury in a rodent model of postnatal nephrogenesis. Pediatr Res 88:565–570. https://doi.org/10.1038/s41390-020-0803-z. (PMID: 10.1038/s41390-020-0803-z320592298226112)
Buchanan S, Combet E, Stenvinkel P, Shiels PG (2020) Klotho, aging, and the failing kidney. Front Endocrinol 11:560. https://doi.org/10.3389/fendo.2020.00560. (PMID: 10.3389/fendo.2020.00560)
Hales CN, Ozanne SE (2003) The dangerous road of catch-up growth. J Physiol 547:5–10. https://doi.org/10.1113/jphysiol.2002.024406. (PMID: 10.1113/jphysiol.2002.02440612562946)
Luyckx VA, Compston CA, Simmen T, Mueller TF (2009) Accelerated senescence in kidneys of low-birth-weight rats after catch-up growth. Am J Physiol Renal Physiol 297:F1697-1705. https://doi.org/10.1152/ajprenal.00462.2009. (PMID: 10.1152/ajprenal.00462.200919828676)
Denic A, Lieske JC, Chakkera HA, Poggio ED, Alexander MP, Singh P, Kremers WK, Lerman LO, Rule AD (2017) The substantial loss of nephrons in healthy human kidneys with aging. J Am Soc Nephrol 28:313–320. https://doi.org/10.1681/ASN.2016020154. (PMID: 10.1681/ASN.201602015427401688)
Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, Lerman LO, Rule AD (2014) Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int 85:677–685. https://doi.org/10.1038/ki.2013.359. (PMID: 10.1038/ki.2013.35924067437)
Yamada K, Doi S, Nakashima A, Kawaoka K, Ueno T, Doi T, Yokoyama Y, Arihiro K, Kohno N, Masaki T (2015) Expression of age-related factors during the development of renal damage in patients with IgA nephropathy. Clin Exp Nephrol 19:830–837. https://doi.org/10.1007/s10157-014-1070-2. (PMID: 10.1007/s10157-014-1070-225504369)
Sis B, Tasanarong A, Khoshjou F, Dadras F, Solez K, Halloran PF (2007) Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int 71:218–226. https://doi.org/10.1038/sj.ki.5002039. (PMID: 10.1038/sj.ki.500203917183247)
Zhao JL, Qiao XH, Mao JH, Liu F, Fu HD (2022) The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Front Pharmacol 13:974361. https://doi.org/10.3389/fphar.2022.974361. (PMID: 10.3389/fphar.2022.974361360917559459105)
Misselwitz J, Franke S, Kauf E, John U, Stein G (2002) Advanced glycation end products in children with chronic renal failure and type 1 diabetes. Pediatr Nephrol 17:316–321. https://doi.org/10.1007/s00467-001-0815-9.
Richter B, Faul C (2018) FGF23 actions on target tissues-with and without klotho. Front Endocrinol 9:189. https://doi.org/10.3389/fendo.2018.00189. (PMID: 10.3389/fendo.2018.00189)
Iurciuc S, Cimpean AM, Mitu F, Heredea R, Iurciuc M (2017) Vascular aging and subclinical atherosclerosis: why such a “never ending” and challenging story in cardiology? Clin Interv Aging 12:1339–1345. https://doi.org/10.2147/CIA.S141265. (PMID: 10.2147/CIA.S141265288837145574695)
South AM, Shaltout HA, Gwathmey TM, Jensen ET, Nixon PA, Diz DI, Chappell MC, Washburn LK (2020) Lower urinary α-Klotho is associated with lower angiotensin-(1–7) and higher blood pressure in young adults born preterm with very low birthweight. J Clin Hypertens (Greenwich) 22:1033–1040. https://doi.org/10.1111/jch.13897. (PMID: 10.1111/jch.1389732475043)
Sanchis P, Ho CY, Liu Y, Beltran LE, Ahmad S, Jacob AP, Furmanik M, Laycock J, Long DA, Shroff R, Shanahan CM (2019) Arterial “inflammaging” drives vascular calcification in children on dialysis. Kidney Int 95:958–972. https://doi.org/10.1016/j.kint.2018.12.014. (PMID: 10.1016/j.kint.2018.12.014308275136684370)
Westhoff JH, Hilgers KF, Steinbach MP, Hartner A, Klanke B, Amann K, Melk A (2008) Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16 INK4a. Hypertension 52:123–129. https://doi.org/10.1161/HYPERTENSIONHA.107.099432.
Lin X, Jin H, Chai Y, Shou S (2022) Cellular senescence and acute kidney injury. Pediatr Nephrol 37:3009–3018. https://doi.org/10.1007/s00467-022-05532-2.
Westhoff JH, Schildhorn C, Jacobi C, Hömme M, Hartner A, Braun H, Kryzer C, Wang C, von Zglinicki T, Kränzlin B, Gretz N, Melk A (2010) Telomere shortening reduces regenerative capacity after acute kidney injury. J Am Soc Nephrol 21:327–336. https://doi.org/10.1681/asn.2009010072. (PMID: 10.1681/asn.2009010072199597222834551)
Lu D, Rauhauser A, Li B, Ren C, McEnery K, Zhu J, Chaki M, Vadnagara K, Elhadi S, Jetten AM (2016) Loss of Glis2/NPHP7 causes kidney epithelial cell senescence and suppresses cyst growth in the Kif3a mouse model of cystic kidney disease. Kidney Int 89:1307–1323. https://doi.org/10.1016/j.kint.2016.03.006. (PMID: 10.1016/j.kint.2016.03.006271817775584074)
Melk A, Schmidt BMW, Braunc H, Vongwiwatana A, Urmson J, Zhu LF, Rayner D, Halloran PF (2009) Effects of donor age and cell senescence on kidney allograft survival. Am J Transplant 9:114–123. https://doi.org/10.1111/j.1600-6143.2008.02500.x. (PMID: 10.1111/j.1600-6143.2008.02500.x19133932)
Joosten SA, van Ham V, Nolan CE, Borrias MC, Jardine AG, Shiels PG, van Kooten C, Paul LC (2003) Telomere shortening and cellular senescence in a model of chronic renal allograft rejection. Am J Pathol 162:1305–1312. https://doi.org/10.1016/S0002-9440(10)63926-0. (PMID: 10.1016/S0002-9440(10)63926-0126516221851231)
Chevalier RL (2023) Bioenergetics: the evolutionary basis of progressive kidney disease. Physiol Rev 103:2451–2506. https://doi.org/10.1152/physrev.00029.2022. (PMID: 10.1152/physrev.00029.202236996412)
Johnson AC, Zager RA (2018) Plasma and urinary p21: potential biomarkers of AKI and renal aging. Am J Physiol Renal Physiol 315:F1329–F1335. https://doi.org/10.1152/ajprenal.00328.2018. (PMID: 10.1152/ajprenal.00328.2018300665876293288)
Tan H, Xu J, Liu Y (2022) Ageing, cellular senescence and chronic kidney disease: experimental evidence. Curr Opin Nephrol Hypertens 31:235–243. https://doi.org/10.1097/mnh.0000000000000782. (PMID: 10.1097/mnh.0000000000000782351427449035037)
Selamet U, Tighiouart H, Sarnak MJ, Beck G, Levey AS, Block G, Ix JH (2016) Relationship of dietary phosphate intake with risk of end-stage renal disease and mortality in chronic kidney disease stages 3–5: the Modification of Diet in Renal Disease Study. Kidney Int 89:176–184. https://doi.org/10.1038/ki.2015.284. (PMID: 10.1038/ki.2015.284264225024814358)
Ning Y-C, Cai G-Y, Zhuo L, Gao J-J, Dong D, Cui S, Feng Z, Shi S-Z, Bai X-Y, Sun X-F (2013) Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage. Mech Ageing Dev 134:570–579. https://doi.org/10.1016/j.mad.2013.11.006. (PMID: 10.1016/j.mad.2013.11.00624291536)
Middelbeek RJW, Motiani P, Brandt N, Nigro P, Zheng J, Virtanen KA, Kalliokoski KK, Hannukainen JC, Goodyear LJ (2021) Exercise intensity regulates cytokine and klotho responses in men. Nutr Diabetes 11:5. https://doi.org/10.1038/s41387-020-00144-x. (PMID: 10.1038/s41387-020-00144-x334143777791135)
Qiu Z, Zheng K, Zhang H, Feng J, Wang L, Zhou H (2017) Physical exercise and patients with chronic renal failure: a meta-analysis. Biomed Res Int 2017:7191826. https://doi.org/10.1155/2017/7191826. (PMID: 10.1155/2017/7191826283169865337868)
Kim K, Yaffe K, Rehkopf DH, Zheng Y, Nannini DR, Perak AM, Nagata JM, Miller GE, Zhang K, Lloyd-Jones DM, Joyce BT, Hou L (2023) Association of adverse childhood experiences with accelerated epigenetic aging in midlife. JAMA Netw Open 6:e2317987. https://doi.org/10.1001/jamanetworkopen.2023.17987. (PMID: 10.1001/jamanetworkopen.2023.179873730699710261996)
Baumann M, Bartholome R, Peutz-Kootstra CJ, Smits JF, Struijker-Boudier HA (2008) Sustained tubulo-interstitial protection in SHRs by transient losartan treatment: an effect of decelerated aging? Am J Hypertens 21:177–182. https://doi.org/10.1038/ajh.2007.30. (PMID: 10.1038/ajh.2007.3018188163)
Yoo KH, Yim HE, Bae ES (2020) Angiotensin inhibition and cellular senescence in the developing rat kidney. Exp Mol Pathol 117:104551. https://doi.org/10.1016/j.yexmp.2020.104551. (PMID: 10.1016/j.yexmp.2020.10455133010296)
Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R (2001) Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res 49:460–467. https://doi.org/10.1203/00006450-200104000-00005. (PMID: 10.1203/00006450-200104000-0000511264427)
Christov M, Neyra JA, Gupta S, Leaf DE (2019) Fibroblast growth factor 23 and klotho in AKI. Semin Nephrol 39:57–75. https://doi.org/10.1016/j.semnephrol.2018.10.005. (PMID: 10.1016/j.semnephrol.2018.10.00530606408)
Hu M-C, Shi M, Zhang J, Quiñones H, Kuro-o M, Moe OW (2010) Klotho deficiency is an early biomarker of renal ischemia–reperfusion injury and its replacement is protective. Kidney Int 78:1240–1251. https://doi.org/10.1038/ki.2010.328. (PMID: 10.1038/ki.2010.328208618253237296)
Neyra JA, Hu MC, Moe OW (2021) Klotho in clinical nephrology: diagnostic and therapeutic implications. Clin J Am Soc Nephrol 16:162–176. https://doi.org/10.2215/CJN.02840320. (PMID: 10.2215/CJN.02840320)
Sanchez-Niño MD, Fernandez-Fernandez B, Ortiz A (2020) Klotho, the elusive kidney-derived anti-ageing factor. Clin Kidney J 13:125–127. https://doi.org/10.1093/ckj/sfz125. (PMID: 10.1093/ckj/sfz12532297880)
Heerspink HJL, Perco P, Mulder S, Leierer J, Hansen MK, Heinzel A, Mayer G (2019) Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 62:1154–1166. https://doi.org/10.1007/s00125-019-4859-4. (PMID: 10.1007/s00125-019-4859-4310016736560022)
Lunder M, Janić M, Japelj M, Juretič A, Janež A, Šabovič M (2018) Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus. Cardiovasc Diabetol 17:153. https://doi.org/10.1186/s12933-018-0797-6. (PMID: 10.1186/s12933-018-0797-6305092716276165)
Jin H, Zhang Y, Liu D, Wang SS, Ding Q, Rastogi P, Purvis M, Wang A, Elhadi S, Ren C (2020) Innate immune signaling contributes to tubular cell senescence in the Glis2 knockout mouse model of nephronophthisis. Am J Pathol 190:176–189. https://doi.org/10.1016/ajpath.2019.09.013. (PMID: 10.1016/ajpath.2019.09.013316763296943802)
Li C, Shen Y, Huang L, Liu C, Wang J (2021) Senolytic therapy ameliorates renal fibrosis postacute kidney injury by alleviating renal senescence. FASEB J 35:e21229. https://doi.org/10.1096/fj.202001855RR. (PMID: 10.1096/fj.202001855RR33368613)
Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL (2019) Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456. https://doi.org/10.1016/j.ebiom.2019.08.069. (PMID: 10.1016/j.ebiom.2019.08.069315423916796530)
معلومات مُعتمدة: R21 DK134104 United States DK NIDDK NIH HHS; R56 DK110622 United States DK NIDDK NIH HHS; R41 DK129138 United States DK NIDDK NIH HHS; K23DK131289 United States DK NIDDK NIH HHS; K23 DK131289 United States DK NIDDK NIH HHS; L40 DK130155 United States DK NIDDK NIH HHS; R21DK134104-01 United States DK NIDDK NIH HHS; P50 DK096373 United States DK NIDDK NIH HHS; L40DK130155 United States DK NIDDK NIH HHS; K23DK131289 United States DK NIDDK NIH HHS; L40DK130155 United States DK NIDDK NIH HHS; R21DK134104-01 United States DK NIDDK NIH HHS
فهرسة مساهمة: Keywords: Acute kidney injury; Chronic kidney disease; ELGANS; Infants; Neonates; Premature aging; Very low birth weight
تواريخ الأحداث: Date Created: 20231110 Date Completed: 20240603 Latest Revision: 20240702
رمز التحديث: 20240702
مُعرف محوري في PubMed: PMC11082067
DOI: 10.1007/s00467-023-06208-1
PMID: 37947901
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-198X
DOI:10.1007/s00467-023-06208-1