دورية أكاديمية

Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies.

التفاصيل البيبلوغرافية
العنوان: Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies.
المؤلفون: Sternberg Z; Jacobs School of Medicine and Biomedical Sciences, Buffalo Medical Center, Buffalo, NY, 14203, USA. zs2@buffalo.edu.
المصدر: Molecular neurobiology [Mol Neurobiol] 2024 May; Vol. 61 (5), pp. 2996-3018. Date of Electronic Publication: 2023 Nov 13.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Clifton, NJ : Humana Press, c1987-
مواضيع طبية MeSH: Aromatic-L-Amino-Acid Decarboxylases*/*deficiency, Aromatic-L-Amino-Acid Decarboxylases*/metabolism , Aromatic-L-Amino-Acid Decarboxylases*/genetics , Amino Acid Metabolism, Inborn Errors*/therapy , Amino Acid Metabolism, Inborn Errors*/genetics , Neurodegenerative Diseases*/therapy, Humans ; Animals
مستخلص: Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology of AADC-DY. In the absence of neurotransmitters' neuroprotective effects, the accumulation and the chronic presence of several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters' synthesis and or function. This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconventional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
(© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Hyland K, Clayton PT (1990) Aromatic amino acid decarboxylase deficiency in twins. J Inherit Metab Dis 13(3):301–304. (PMID: 170019110.1007/BF01799380)
Shih DF, Hsiao CD, Min MY, Lai WS, Yang CW, Lee WT, Lee SJ (2013) Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS ONE 8(8):e71741. (PMID: 23940784373430310.1371/journal.pone.0071741)
Gaspar P, Cases O, Maroteaux L (2003) The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4(12):1002–1012. (PMID: 1461815610.1038/nrn1256)
Brun L, Ngu LH, Keng WT, Ch’ng GS, Choy YS, Hwu WL, Lee WT, Willemsen MA et al (2010) Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75(1):64–71. (PMID: 2050513410.1212/WNL.0b013e3181e620ae)
Pearson TS, Gilbert L, Opladen T, Garcia-Cazorla A, Mastrangelo M, Leuzzi V, Tay SKH, Sykut-Cegielska J et al (2020) AADC deficiency from infancy to adulthood: symptoms and developmental outcome in an international cohort of 63 patients. J Inherit Metab Dis 43(5):1121–1130. (PMID: 32369189754052910.1002/jimd.12247)
Hwu W-L (2023) Aromatic L-amino acid decarboxylase deficiency in Taiwan. JIMD Rep 64(5):387–392. (PMID: 377013321049450810.1002/jmd2.12387)
Hitti FL, Yang AI, Gonzalez-Alegre P, Baltuch GH (2019) Human gene therapy approaches for the treatment of Parkinson’s disease: an overview of current and completed clinical trials. Parkinsonism Relat Disord 66:16–24. (PMID: 3132455610.1016/j.parkreldis.2019.07.018)
Wassenberg T, Molero-Luis M, Jeltsch K, Hoffmann GF, Assmann B, Blau N, Garcia-Cazorla A, Artuch R et al (2017) Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis 12(1):12. (PMID: 28100251524193710.1186/s13023-016-0522-z)
Andersohn F, Garbe E (2009) Cardiac and noncardiac fibrotic reactions caused by ergot-and nonergot-derived dopamine agonists. Mov Disord 24(1):129–133. (PMID: 1917019910.1002/mds.22385)
Cincotta AH, Meier AH (1995) Bromocriptine inhibits in vivo free fatty acid oxidation and hepatic glucose output in seasonally obese hamsters (Mesocricetus auratus). Metabolism 44(10):1349–1355. (PMID: 747629610.1016/0026-0495(95)90041-1)
Luo S, Meier AH, Cincotta AH (1998) Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology 68(1):1–10. (PMID: 969593310.1159/000054344)
Himmelreich N, Montioli R, Bertoldi M, Carducci C, Leuzzi V, Gemperle C, Berner T, Hyland K et al (2019) Aromatic amino acid decarboxylase deficiency: molecular and metabolic basis and therapeutic outlook. Mol Genet Metab 127(1):12–22. (PMID: 3095262210.1016/j.ymgme.2019.03.009)
Manegold C, Hoffmann GF, Degen I, Ikonomidou H, Knust A, Laass MW, Pritsch M, Wilichowski E et al (2009) Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. J Inherit Metab Dis 32(3):371–380. (PMID: 1917241010.1007/s10545-009-1076-1)
Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, Cunningham J, Budinger TF et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164(1):2–14. (PMID: 1087791010.1006/exnr.2000.7408)
Christine CW, Starr PA, Larson PS, Eberling JL, Jagust WJ, Hawkins RA, VanBrocklin HF, Wright JF et al (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73(20):1662–1669. (PMID: 19828868283980510.1212/WNL.0b013e3181c29356)
Muramatsu S, Fujimoto K, Kato S, Mizukami H, Asari S, Ikeguchi K, Kawakami T, Urabe M et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18(9):1731–1735. (PMID: 20606642295692510.1038/mt.2010.135)
Hwu WL, Muramatsu S, Tseng SH, Tzen KY, Lee NC, Chien YH, Snyder RO, Byrne BJ et al (2012) Gene therapy for aromatic L-amino acid decarboxylase deficiency. Sci Transl Med 4(134):134ra61. (PMID: 2259317410.1126/scitranslmed.3003640)
Chien YH, Lee NC, Tseng SH, Tai CH, Muramatsu SI, Byrne BJ, Hwu WL (2017) Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: an open-label, phase 1/2 trial. Lancet Child Adolesc Health 1(4):265–273. (PMID: 3016918210.1016/S2352-4642(17)30125-6)
Tai CH, Lee NC, Chien YH, Byrne BJ, Muramatsu SI, Tseng SH, Hwu WL (2022) Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency. Mol Ther 30(2):509–518. (PMID: 3476308510.1016/j.ymthe.2021.11.005)
Pearson TS, Gupta N, San Sebastian W, Imamura-Ching J, Viehoever A, Grijalvo-Perez A, Fay AJ, Seth N et al (2021) Gene therapy for aromatic L-amino acid decarboxylase deficiency by MR-guided direct delivery of AAV2-AADC to midbrain dopaminergic neurons. Nat Commun 12(1):4251. (PMID: 34253733827558210.1038/s41467-021-24524-8)
Lee WT, Weng WC, Peng SF, Tzen KY (2009) Neuroimaging findings in children with paediatric neurotransmitter diseases. J Inherit Metab Dis 32(3):361–370. (PMID: 1945540310.1007/s10545-009-1106-z)
Keam SJ (2022) Eladocagene exuparvovec: first approval. Drugs 82(13):1427–1432. (PMID: 36103022)
Zhao WQ, Latinwo L, Liu XX, Lee ES, Lamango N, Charlton CG (2001) L-dopa upregulates the expression and activities of methionine adenosyl transferase and catechol-O-methyltransferase. Exp Neurol 171(1):127–138. (PMID: 1152012710.1006/exnr.2001.7726)
Wassenberg T, Geurtz BPH, Monnens L, Wevers RA, Willemsen MA, Verbeek MM (2021) Blood, urine and cerebrospinal fluid analysis in TH and AADC deficiency and the effect of treatment. Mol Genet Metab Rep 27:100762. (PMID: 339964918093927)
Miller JW, Shukitt-Hale B, Villalobos-Molina R, Nadeau MR, Selhub J, Joseph JA (1997) Effect of L-dopa and the catechol-O-methyltransferase inhibitor Ro 41–0960 on sulfur amino acid metabolites in rats. Clin Neuropharmacol 20(1):55–66. (PMID: 903757410.1097/00002826-199702000-00007)
Liu XX, Wilson K, Charlton CG (2000) Effects of L-dopa treatment on methylation in mouse brain: implications for the side effects of L-dopa. Life Sci 66(23):2277–2288. (PMID: 1085594910.1016/S0024-3205(00)00557-9)
Hasegawa T, Kosoku Y, Sano Y, Yoshida H, Kudoh C, Tabira T (2020) Homocysteic acid in blood can detect mild cognitive impairment: a preliminary study. J Alzheimers Dis 77(2):773–780. (PMID: 32741817759268510.3233/JAD-200234)
Sibrian-Vazquez M, Escobedo JO, Lim S, Samoei GK, Strongin RM (2010) Homocystamides promote free-radical and oxidative damage to proteins. Proc Natl Acad Sci U S A 107(2):551–554. (PMID: 2008071710.1073/pnas.0909737107)
Kumar M, Modi M, Sandhir R (2017) Hydrogen sulfide attenuates homocysteine-induced cognitive deficits and neurochemical alterations by improving endogenous hydrogen sulfide levels. BioFactors 43(3):434–450. (PMID: 2839403810.1002/biof.1354)
Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16(3):1066–1071. (PMID: 8558235657881710.1523/JNEUROSCI.16-03-01066.1996)
Modis K, Asimakopoulou A, Coletta C, Papapetropoulos A, Szabo C (2013) Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochem Biophys Res Commun 433(4):401–407. (PMID: 2353765710.1016/j.bbrc.2013.02.131)
Sabens EA, Distler AM, Mieyal JJ (2010) Levodopa deactivates enzymes that regulate thiol-disulfide homeostasis and promotes neuronal cell death: implications for therapy of Parkinson’s disease. Biochemistry 49(12):2715–2724. (PMID: 2014116910.1021/bi9018658)
Bachiller S, Jimenez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A (2018) Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 12:488. (PMID: 30618635630540710.3389/fncel.2018.00488)
Muzio L, Viotti A, Martino G (2021) Microglia in neuroinflammation and neurodegeneration: from understanding to therapy. Front Neurosci 15:742065. (PMID: 34630027849781610.3389/fnins.2021.742065)
Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46(6):957–967. (PMID: 2863696210.1016/j.immuni.2017.06.006)
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487. (PMID: 28099414540489010.1038/nature21029)
Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8(21):2003–2014. (PMID: 252065094145906)
Chen Y, Stankovic R, Cullen KM, Meininger V, Garner B, Coggan S, Grant R, Brew BJ et al (2010) The kynurenine pathway and inflammation in amyotrophic lateral sclerosis. Neurotox Res 18(2):132–142. (PMID: 1992153510.1007/s12640-009-9129-7)
Zhang Y, Wang L, Ren W (2022) Blast-related traumatic brain injury is mediated by the kynurenine pathway. NeuroReport 33(13):569–576. (PMID: 3589467210.1097/WNR.0000000000001817)
Popoli P, Pintor A, Domenici MR, Frank C, Tebano MT, Pezzola A, Scarchilli L, Quarta D et al (2002) Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. J Neurosci 22(5):1967–1975. (PMID: 11880527675887710.1523/JNEUROSCI.22-05-01967.2002)
Fisher A, Starr MS (2000) Opposite effects of glutamate antagonists and antiparkinsonian drugs on the activities of DOPA decarboxylase and 5-HTP decarboxylase in the rat brain. Brain Res 868(2):268–274. (PMID: 1085457910.1016/S0006-8993(00)02339-8)
Allen GFG (2010) The neurochemical consequences of aromatic L-amino acid decarboxylase deficiency. UCL Institute of Neurology, London.
Kuruma I, Bartholini G, Tissot R, Pletscher A (1971) The metabolism of L-3-O-methyldopa, a precursor of dopa in man. Clin Pharmacol Ther 12(4):678–682. (PMID: 556781110.1002/cpt1971124678)
Marion MH, Stocchi F, Quinn NP, Jenner P, Marsden CD (1986) Repeated levodopa infusions in fluctuating Parkinson’s disease: clinical and pharmacokinetic data. Clin Neuropharmacol 9(2):165–181. (PMID: 370860210.1097/00002826-198604000-00008)
Lee ES, Chen H, King J, Charlton C (2008) The role of 3-O-methyldopa in the side effects of L-dopa. Neurochem Res 33(3):401–411. (PMID: 1771385310.1007/s11064-007-9442-6)
Adamiak-Giera U, Jawien W, Pierzchlinska A, Bialecka M, Kobierski JD, Janus T, Gawronska-Szklarz B (2021) Pharmacokinetics of levodopa and 3-O-methyldopa in parkinsonian patients treated with levodopa and ropinirole and in patients with motor complications. Pharmaceutics 13(9):1395. (PMID: 34575471847236410.3390/pharmaceutics13091395)
Feuerstein C, Serre F, Gavend M, Pellat J, Perret J, Tanche M (1977) Plasma O-methyldopa in levodopa-induced dyskinesias. A bioclinical investigation. Acta Neurol Scand 56(6):508–524. (PMID: 60577410.1111/j.1600-0404.1977.tb01456.x)
Mena MA, Muradas V, Bazan E, Reiriz J, de Yebenes JG (1987) Pharmacokinetics of L-dopa in patients with Parkinson’s disease. Adv Neurol 45:481–486. (PMID: 2950730)
Rivera-Calimlim L, Tandon D, Anderson F, Joynt R (1977) The clinical picture and plasma levodopa metabolite profile of parkinsonian nonresponders. Treatment with levodopa and decarboxylase inhibitor. Arch Neurol 34(4):228–232. (PMID: 84325710.1001/archneur.1977.00500160042007)
Tohgi H, Abe T, Kikuchi T, Takahashi S, Nozaki Y (1991) The significance of 3-O-methyldopa concentrations in the cerebrospinal fluid in the pathogenesis of wearing-off phenomenon in Parkinson’s disease. Neurosci Lett 132(1):19–22. (PMID: 178791310.1016/0304-3940(91)90422-P)
Kubaski F, Herbst ZM, Pereira DAA, Silva C, Chen C, Hwu PWL, van der Linden H, Lourenco CM et al (2021) Evaluation of 3-O-methyldopa as a biomarker for aromatic L-amino acid decarboxylase deficiency in 7 Brazilian cases. Mol Genet Metab Rep 27:100744. (PMID: 337633327973244)
Burlina A, Giuliani A, Polo G, Gueraldi D, Gragnaniello V, Cazzorla C, Opladen T, Hoffmann G et al (2021) Detection of 3-O-methyldopa in dried blood spots for neonatal diagnosis of aromatic L-amino-acid decarboxylase deficiency: the northeastern Italian experience. Mol Genet Metab 133(1):56–62. (PMID: 3374409510.1016/j.ymgme.2021.03.009)
Czarnecka AM, Hilgier W, Zielinska M (2020) S-adenosylmethionine deficiency and brain accumulation of S-adenosylhomocysteine in thioacetamide-induced acute liver failure. Nutrients 12(7):2135. (PMID: 32709137740080310.3390/nu12072135)
Obeid R, Schadt A, Dillmann U, Kostopoulos P, Fassbender K, Herrmann W (2009) Methylation status and neurodegenerative markers in Parkinson disease. Clin Chem 55(10):1852–1860. (PMID: 1967963210.1373/clinchem.2009.125021)
Alachkar A, Brotchie JM, Jones OT (2010) Binding of dopamine and 3-methoxytyramine as l-DOPA metabolites to human alpha(2)-adrenergic and dopaminergic receptors. Neurosci Res 67(3):245–249. (PMID: 2030289210.1016/j.neures.2010.03.008)
Deleu D, Northway MG, Hanssens Y (2002) Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet 41(4):261–309. (PMID: 1197814510.2165/00003088-200241040-00003)
Wade LA, Katzman R (1975) 3-O-methyldopa uptake and inhibition of L-dopa at the blood-brain barrier. Life Sci 17(1):131–136. (PMID: 114300610.1016/0024-3205(75)90248-9)
Weiner WJ (2006) Levodopa–toxic or neuroprotective? Nat Clin Pract Neurol 2(10):518–519. (PMID: 1699082010.1038/ncpneuro0293)
Ziv I, Zilkha-Falb R, Offen D, Shirvan A, Barzilai A, Melamed E (1997) Levodopa induces apoptosis in cultured neuronal cells–a possible accelerator of nigrostriatal degeneration in Parkinson’s disease? Mov Disord 12(1):17–23. (PMID: 899004910.1002/mds.870120105)
Pierson J, Norris JL, Aerni HR, Svenningsson P, Caprioli RM, Andren PE (2004) Molecular profiling of experimental Parkinson’s disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J Proteome Res 3(2):289–295. (PMID: 1511310610.1021/pr0499747)
Scholz B, Svensson M, Alm H, Skold K, Falth M, Kultima K, Guigoni C, Doudnikoff E et al (2008) Striatal proteomic analysis suggests that first L-dopa dose equates to chronic exposure. PLoS ONE 3(2):e1589. (PMID: 18270577221759610.1371/journal.pone.0001589)
Pattison DI, Dean RT, Davies MJ (2002) Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s. Toxicology 177(1):23–37. (PMID: 1212679310.1016/S0300-483X(02)00193-2)
Shehata AM, Ahmed-Farid OA, Rizk HA, Saber SM, Lashin FM, Re L (2020) Neurochemical, neurobehavioral and histochemical effects of therapeutic dose of l-dopa on striatal neurons in rats: protective effect of virgin coconut oil. Biomed Pharmacother 130:110473. (PMID: 3270743610.1016/j.biopha.2020.110473)
Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J et al (2015) NFkappaB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 85(1):101–115. (PMID: 2553348210.1016/j.neuron.2014.11.018)
Mena MA, Pardo B, Casarejos MJ, Fahn S, Garcia de Yebenes J (1992) Neurotoxicity of levodopa on catecholamine-rich neurons. Mov Disord 7(1):23–31. (PMID: 155706310.1002/mds.870070105)
Lai CT, Yu PH (1997) Dopamine- and L-beta-3,4-dihydroxyphenylalanine hydrochloride (L-Dopa)-induced cytotoxicity towards catecholaminergic neuroblastoma SH-SY5Y cells. Effects of oxidative stress and antioxidative factors. Biochem Pharmacol 53(3):363–372. (PMID: 906574010.1016/S0006-2952(96)00731-9)
Blessing H, Bareiss M, Zettlmeisl H, Schwarz J, Storch A (2003) Catechol-O-methyltransferase inhibition protects against 3,4-dihydroxyphenylalanine (DOPA) toxicity in primary mesencephalic cultures: new insights into levodopa toxicity. Neurochem Int 42(2):139–151. (PMID: 1242159410.1016/S0197-0186(02)00075-X)
Mytilineou C, Walker RH, JnoBaptiste R, Olanow CW (2003) Levodopa is toxic to dopamine neurons in an in vitro but not an in vivo model of oxidative stress. J Pharmacol Exp Ther 304(2):792–800. (PMID: 1253883510.1124/jpet.102.042267)
Han SK, Mytilineou C, Cohen G (1996) L-DOPA up-regulates glutathione and protects mesencephalic cultures against oxidative stress. J Neurochem 66(2):501–510. (PMID: 859211910.1046/j.1471-4159.1996.66020501.x)
Jang W, Park HH, Lee KY, Lee YJ, Kim HT, Koh SH (2015) 1,25-Dyhydroxyvitamin D3 attenuates L-DOPA-induced neurotoxicity in neural stem cells. Mol Neurobiol 51(2):558–570. (PMID: 2510294010.1007/s12035-014-8835-1)
Pardo B, Mena MA, de Yebenes JG (1995) L-dopa inhibits complex IV of the electron transport chain in catecholamine-rich human neuroblastoma NB69 cells. J Neurochem 64(2):576–582. (PMID: 783005010.1046/j.1471-4159.1995.64020576.x)
Colamartino M, Padua L, Meneghini C, Leone S, Cornetta T, Testa A, Cozzi R (2012) Protective effects of L-dopa and carbidopa combined treatments on human catecholaminergic cells. DNA Cell Biol 31(11):1572–1579. (PMID: 2302011910.1089/dna.2011.1546)
Mena MA, Davila V, Sulzer D (1997) Neurotrophic effects of L-DOPA in postnatal midbrain dopamine neuron/cortical astrocyte cocultures. J Neurochem 69(4):1398–1408. (PMID: 932626810.1046/j.1471-4159.1997.69041398.x)
Asanuma M, Miyazaki I (2016) 3-O-methyldopa inhibits astrocyte-mediated dopaminergic neuroprotective effects of L-DOPA. BMC Neurosci 17(1):52. (PMID: 27456338496070410.1186/s12868-016-0289-0)
Koshimura K, Tanaka J, Murakami Y, Kato Y (2000) Effects of dopamine and L-DOPA on survival of PC12 cells. J Neurosci Res 62(1):112–119. (PMID: 1100229310.1002/1097-4547(20001001)62:1<112::AID-JNR12>3.0.CO;2-6)
Jia Z, Zhu H, Misra BR, Li Y, Misra HP (2008) Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection. Neurochem Res 33(11):2197–2205. (PMID: 1836848410.1007/s11064-008-9670-4)
Newcomer TA, Rosenberg PA, Aizenman E (1995) Iron-mediated oxidation of 3,4-dihydroxyphenylalanine to an excitotoxin. J Neurochem 64(4):1742–1748. (PMID: 789110310.1046/j.1471-4159.1995.64041742.x)
Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE (2018) Heavy metal mixture exposure and effects in developing nations: an update. Toxics 6(4):65. (PMID: 30400192631610010.3390/toxics6040065)
Damier P, Hirsch EC, Zhang P, Agid Y, Javoy-Agid F (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52(1):1–6. (PMID: 843380210.1016/0306-4522(93)90175-F)
Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55(6):659–665. (PMID: 1022010710.1002/(SICI)1097-4547(19990315)55:6<659::AID-JNR1>3.0.CO;2-C)
Gotz ME, Kunig G, Riederer P, Youdim MB (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63(1):37–122. (PMID: 797234410.1016/0163-7258(94)90055-8)
Allen GF, Ullah Y, Hargreaves IP, Land JM, Heales SJ (2013) Dopamine but not l-dopa stimulates neural glutathione metabolism. Potential implications for Parkinson’s and other dopamine deficiency states. Neurochem Int 62(5):684–694. (PMID: 2326151510.1016/j.neuint.2012.12.004)
Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26-36 (discussion S36-8). (PMID: 1266609610.1002/ana.10483)
Badanjak K, Fixemer S, Smajic S, Skupin A, Grunewald A (2021) The contribution of microglia to neuroinflammation in Parkinson’s disease. Int J Mol Sci 22(9):4676. (PMID: 33925154812575610.3390/ijms22094676)
Al-Bachari S, Naish JH, Parker GJM, Emsley HCA, Parkes LM (2020) Blood-brain barrier leakage is increased in Parkinson’s disease. Front Physiol 11:593026. (PMID: 33414722778491110.3389/fphys.2020.593026)
Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16(25):2766–2778. (PMID: 2069882010.2174/138161210793176572)
Kurz C, Walker L, Rauchmann BS, Perneczky R (2022) Dysfunction of the blood-brain barrier in Alzheimer’s disease: evidence from human studies. Neuropathol Appl Neurobiol 48(3):e12782. (PMID: 3482326910.1111/nan.12782)
Tam OH, Rozhkov NV, Shaw R, Kim D, Hubbard I, Fennessey S, Propp N, Consortium NA et al (2019) Postmortem cortex samples identify distinct molecular subtypes of ALS: retrotransposon activation, oxidative stress, and activated glia. Cell Rep 29(5):1164-1177 e5. (PMID: 31665631686666610.1016/j.celrep.2019.09.066)
Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MC, Haller E, Frisina-Deyo A, Mirtyl S, Sallot S, Saporta S et al (2012) Impaired blood-brain/spinal cord barrier in ALS patients. Brain Res 1469:114–128. (PMID: 2275012510.1016/j.brainres.2012.05.056)
Kim JB, Sig Choi J, Yu YM, Nam K, Piao CS, Kim SW, Lee MH, Han PL et al (2006) HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. J Neurosci 26(24):6413–21. (PMID: 16775128667403610.1523/JNEUROSCI.3815-05.2006)
Hu X, Liou AK, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y et al (2014) Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 119–120:60–84. (PMID: 2492365710.1016/j.pneurobio.2014.06.002)
Chan SJ, Niu W, Hayakawa K, Hamanaka G, Wang X, Cheah PS, Guo S, Yu Z et al (2019) Promoting neuro-supportive properties of astrocytes with epidermal growth factor hydrogels. Stem Cells Transl Med 8(12):1242–1248. (PMID: 31483567687776210.1002/sctm.19-0159)
Miyazaki I, Asanuma M, Kikkawa Y, Takeshima M, Murakami S, Miyoshi K, Sogawa N, Kita T (2011) Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity. Glia 59(3):435–451. (PMID: 2126495010.1002/glia.21112)
Yi JH, Hazell AS (2006) Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int 48(5):394–403. (PMID: 1647343910.1016/j.neuint.2005.12.001)
Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. (PMID: 1749767010.1002/jnr.21325)
Takaki J, Fujimori K, Miura M, Suzuki T, Sekino Y, Sato K (2012) L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J Neuroinflammation 9:275. (PMID: 23259598357528110.1186/1742-2094-9-275)
Vargas MR, Johnson JA (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev Mol Med 11:e17. (PMID: 19490732556325610.1017/S1462399409001094)
Li S, Zhou C, Zhu Y, Chao Z, Sheng Z, Zhang Y, Zhao Y (2021) Ferrostatin-1 alleviates angiotensin II (Ang II)-induced inflammation and ferroptosis in astrocytes. Int Immunopharmacol 90:107179. (PMID: 3327874510.1016/j.intimp.2020.107179)
Miyazaki I, Asanuma M, Diaz-Corrales FJ, Miyoshi K, Ogawa N (2004) Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res 1029(1):120–123. (PMID: 1553332310.1016/j.brainres.2004.09.014)
Furukawa N, Arai N, Goshima Y, Miyamae T, Ohshima E, Suzuki F, Fujita K, Misu Y (2001) Endogenously released DOPA is a causal factor for glutamate release and resultant delayed neuronal cell death by transient ischemia in rat striata. J Neurochem 76(3):815–824. (PMID: 1115825310.1046/j.1471-4159.2001.00068.x)
Asanuma M, Miyazaki I, Murakami S, Diaz-Corrales FJ, Ogawa N (2014) Striatal astrocytes act as a reservoir for L-DOPA. PLoS ONE 9(9):e106362. (PMID: 25188235415469210.1371/journal.pone.0106362)
Springer W, Kahle PJ (2011) Regulation of PINK1-Parkin-mediated mitophagy. Autophagy 7(3):266–278. (PMID: 2118772110.4161/auto.7.3.14348)
Chen H, Chan DC (2009) Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. (PMID: 19808793275871110.1093/hmg/ddp326)
Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW 2nd, Mochly-Rosen D (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22(10):1635–1648. (PMID: 31551592676458910.1038/s41593-019-0486-0)
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173. (PMID: 1084366610.4049/jimmunol.164.12.6166)
Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194. (PMID: 2559835410.1007/s12035-014-9070-5)
Nissanka N, Moraes CT (2018) Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett 592(5):728–742. (PMID: 29281123694269610.1002/1873-3468.12956)
Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, Palanisamy BN, Rokad D et al (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinsons Dis 3:30. (PMID: 29057315564540010.1038/s41531-017-0032-2)
Macdonald R, Barnes K, Hastings C, Mortiboys H (2018) Mitochondrial abnormalities in Parkinson’s disease and Alzheimer’s disease: can mitochondria be targeted therapeutically? Biochem Soc Trans 46(4):891–909. (PMID: 3002637110.1042/BST20170501)
Davis CH, Kim KY, Bushong EA, Mills EA, Boassa D, Shih T, Kinebuchi M, Phan S et al (2014) Transcellular degradation of axonal mitochondria. Proc Natl Acad Sci U S A 111(26):9633–9638. (PMID: 24979790408444310.1073/pnas.1404651111)
Khasnavis S, Pahan K (2014) Cinnamon treatment upregulates neuroprotective proteins Parkin and DJ-1 and protects dopaminergic neurons in a mouse model of Parkinson’s disease. J Neuroimmune Pharmacol 9(4):569–581. (PMID: 24946862416759710.1007/s11481-014-9552-2)
Pons R, Ford B, Chiriboga CA, Clayton PT, Hinton V, Hyland K, Sharma R, De Vivo DC (2004) Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Neurology 62(7):1058–1065. (PMID: 1507900210.1212/WNL.62.7.1058)
Lee HF, Tsai CR, Chi CS, Chang TM, Lee HJ (2009) Aromatic L-amino acid decarboxylase deficiency in Taiwan. Eur J Paediatr Neurol 13(2):135–140. (PMID: 1856751410.1016/j.ejpn.2008.03.008)
Lee WT, Lin JH, Weng WC, Peng SS (2017) Microstructural changes of brain in patients with aromatic L-amino acid decarboxylase deficiency. Hum Brain Mapp 38(3):1532–1540. (PMID: 2785992810.1002/hbm.23470)
Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43(4):348–364. (PMID: 1924124110.1080/10715760902751902)
Walsh J, Tozer DJ, Sari H, Hong YT, Drazyk A, Williams G, Shah NJ, O’Brien JT et al (2021) Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain 144(5):1361–1371. (PMID: 34000009887487310.1093/brain/awab003)
Kamath AF, Chauhan AK, Kisucka J, Dole VS, Loscalzo J, Handy DE, Wagner DD (2006) Elevated levels of homocysteine compromise blood-brain barrier integrity in mice. Blood 107(2):591–593. (PMID: 16189268189561410.1182/blood-2005-06-2506)
Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7(1):41–53. (PMID: 1637194910.1038/nrn1824)
Gray MT, Woulfe JM (2015) Striatal blood-brain barrier permeability in Parkinson’s disease. J Cereb Blood Flow Metab 35(5):747–750. (PMID: 25757748442087010.1038/jcbfm.2015.32)
Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS ONE 8(9):e76310. (PMID: 24086725378545910.1371/journal.pone.0076310)
Maeda T, Cheng N, Kume T, Kaneko S, Kouchiyama H, Akaike A, Ueda M, Satoh M et al (1997) L-DOPA neurotoxicity is mediated by glutamate release in cultured rat striatal neurons. Brain Res 771(1):159–162. (PMID: 938302010.1016/S0006-8993(97)00908-6)
Goshima Y, Ohno K, Nakamura S, Miyamae T, Misu Y, Akaike A (1993) L-dopa induces Ca(2+)-dependent and tetrodotoxin-sensitive release of endogenous glutamate from rat striatal slices. Brain Res 617(1):167–170. (PMID: 810408310.1016/0006-8993(93)90631-V)
Gill R, Foster AC, Woodruff GN (1987) Systemic administration of MK-801 protects against ischemia-induced hippocampal neurodegeneration in the gerbil. J Neurosci 7(10):3343–3349. (PMID: 3312511656918710.1523/JNEUROSCI.07-10-03343.1987)
Sheardown MJ, Nielsen EO, Hansen AJ, Jacobsen P, Honore T (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 247(4942):571–574. (PMID: 215403410.1126/science.2154034)
Pedrosa R, Soares-da-Silva P (2002) Oxidative and non-oxidative mechanisms of neuronal cell death and apoptosis by L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine. Br J Pharmacol 137(8):1305–1313. (PMID: 12466240157360710.1038/sj.bjp.0704982)
Golembiowska K, Dziubina A (2012) Effect of adenosine A(2A) receptor antagonists and L-DOPA on hydroxyl radical, glutamate and dopamine in the striatum of 6-OHDA-treated rats. Neurotox Res 21(2):222–230. (PMID: 2183016310.1007/s12640-011-9263-x)
Chan SW, Dunlop RA, Rowe A, Double KL, Rodgers KJ (2012) L-DOPA is incorporated into brain proteins of patients treated for Parkinson’s disease, inducing toxicity in human neuroblastoma cells in vitro. Exp Neurol 238(1):29–37. (PMID: 2200177410.1016/j.expneurol.2011.09.029)
Davis AA, Leyns CEG, Holtzman DM (2018) Intercellular spread of protein aggregates in neurodegenerative disease. Annu Rev Cell Dev Biol 34:545–568. (PMID: 30044648635008210.1146/annurev-cellbio-100617-062636)
Stansley BJ, Yamamoto BK (2013) L-dopa-induced dopamine synthesis and oxidative stress in serotonergic cells. Neuropharmacology 67:243–251. (PMID: 2319606810.1016/j.neuropharm.2012.11.010)
Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M (2001) Activation of 5-HT(1A) but not 5-HT(1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered L-DOPA in the striatum with nigrostriatal denervation. J Neurochem 76(5):1346–1353. (PMID: 1123871910.1046/j.1471-4159.2001.00184.x)
Navailles S, Bioulac B, Gross C, De Deurwaerdere P (2011) Chronic L-DOPA therapy alters central serotonergic function and L-DOPA-induced dopamine release in a region-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 41(2):585–590. (PMID: 2109275910.1016/j.nbd.2010.11.007)
Stansley BJ, Yamamoto BK (2015) Behavioral impairments and serotonin reductions in rats after chronic L-dopa. Psychopharmacology 232(17):3203–3213. (PMID: 26037945453608010.1007/s00213-015-3980-4)
Stansley BJ, Yamamoto BK (2015) L-dopa and brain serotonin system dysfunction. Toxics 3(1):75–88. (PMID: 29056652563469710.3390/toxics3010075)
Kalogiannis M, Delikatny EJ, Jeitner TM (2016) Serotonin as a putative scavenger of hypohalous acid in the brain. Biochim Biophys Acta 1862(4):651–661. (PMID: 2669907710.1016/j.bbadis.2015.12.012)
Xia C, Tong X (2018) Moschamine-related indole alkaloids, Alkaloids. Chem Biol 79:139–189.
Miyazaki I, Asanuma M, Murakami S, Takeshima M, Torigoe N, Kitamura Y, Miyoshi K (2013) Targeting 5-HT(1A) receptors in astrocytes to protect dopaminergic neurons in Parkinsonian models. Neurobiol Dis 59:244–256. (PMID: 2395914010.1016/j.nbd.2013.08.003)
Mor A, Tankiewicz-Kwedlo A, Krupa A, Pawlak D (2021) Role of kynurenine pathway in oxidative stress during neurodegenerative disorders. Cells 10(7):1603. (PMID: 34206739830660910.3390/cells10071603)
Keithahn C, Lerchl A (2005) 5-Hydroxytryptophan is a more potent in vitro hydroxyl radical scavenger than melatonin or vitamin C. J Pineal Res 38(1):62–66. (PMID: 1561753810.1111/j.1600-079X.2004.00177.x)
Soares-da-Silva P, Parada A, Serrao P (2000) The O-methylated derivative of L-DOPA, 3-O-methyl-L-DOPA, fails to inhibit neuronal and non-neuronal aromatic L-amino acid decarboxylase. Brain Res 863(1–2):293–297. (PMID: 1077322210.1016/S0006-8993(00)02158-2)
Kuhn DM, Arthur RE Jr (1999) L-DOPA-quinone inactivates tryptophan hydroxylase and converts the enzyme to a redox-cycling quinoprotein. Brain Res Mol Brain Res 73(1–2):78–84. (PMID: 1058140010.1016/S0169-328X(99)00238-7)
LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11(11):1214–1221. (PMID: 1622798710.1038/nm1314)
Skovierova H, Vidomanova E, Mahmood S, Sopkova J, Drgova A, Cervenova T, Halasova E, Lehotsky J (2016) The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci 17(10):1733. (PMID: 27775595508576310.3390/ijms17101733)
Moretti R, Caruso P (2019) The controversial role of homocysteine in neurology: from labs to clinical practice. Int J Mol Sci 20(1):231. (PMID: 30626145633722610.3390/ijms20010231)
Obeid R, McCaddon A, Herrmann W (2007) The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin Chem Lab Med 45(12):1590–1606. (PMID: 1806744610.1515/CCLM.2007.356)
Muller T, Woitalla D, Muhlack S (2011) Inhibition of catechol-O-methyltransferase modifies acute homocysteine rise during repeated levodopa application in patients with Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 383(6):627–633. (PMID: 2153399510.1007/s00210-011-0629-7)
Muller T, Woitalla D, Fowler B, Kuhn W (2002) 3-OMD and homocysteine plasma levels in parkinsonian patients. J Neural Transm (Vienna) 109(2):175–179. (PMID: 1207585710.1007/s007020200013)
Miller JW, Selhub J, Nadeau MR, Thomas CA, Feldman RG, Wolf PA (2003) Effect of L-dopa on plasma homocysteine in PD patients: relationship to B-vitamin status. Neurology 60(7):1125–1129. (PMID: 1268231810.1212/01.WNL.0000055899.24594.8E)
Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett 580(13):2994–3005. (PMID: 1669737110.1016/j.febslet.2006.04.088)
Kumar M, Ray RS, Sandhir R (2018) Hydrogen sulfide attenuates homocysteine-induced neurotoxicity by preventing mitochondrial dysfunctions and oxidative damage: in vitro and in vivo studies. Neurochem Int 120:87–98. (PMID: 3005519510.1016/j.neuint.2018.07.010)
da Cunha AA, Ferreira AG, Wyse AT (2010) Increased inflammatory markers in brain and blood of rats subjected to acute homocysteine administration. Metab Brain Dis 25(2):199–206. (PMID: 2042490610.1007/s11011-010-9188-8)
Kamat PK, Kalani A, Givvimani S, Sathnur PB, Tyagi SC, Tyagi N (2013) Hydrogen sulfide attenuates neurodegeneration and neurovascular dysfunction induced by intracerebral-administered homocysteine in mice. Neuroscience 252:302–319. (PMID: 2391203810.1016/j.neuroscience.2013.07.051)
Dos Santos TM, Ramires Junior OV, Alves VS, Coutinho-Silva R, Savio LEB, Wyse ATS (2021) Hyperhomocysteinemia alters cytokine gene expression, cytochrome c oxidase activity and oxidative stress in striatum and cerebellum of rodents. Life Sci 277:119386. (PMID: 3377402410.1016/j.lfs.2021.119386)
Bhattacharjee N, Paul R, Giri A, Borah A (2016) Chronic exposure of homocysteine in mice contributes to dopamine loss by enhancing oxidative stress in nigrostriatum and produces behavioral phenotypes of Parkinson’s disease. Biochem Biophys Rep 6:47–53. (PMID: 289558615600271)
Christine CW, Auinger P, Joslin A, Yelpaala Y, Green R, D.I. Parkinson Study Group (2018) Vitamin B12 and homocysteine levels predict different outcomes in early Parkinson’s disease. Mov Disord 33(5):762–770. (PMID: 2950890410.1002/mds.27301)
Goldstein DS, Sullivan P, Holmes C, Miller GW, Alter S, Strong R, Mash DC, Kopin IJ et al (2013) Determinants of buildup of the toxic dopamine metabolite DOPAL in Parkinson’s disease. J Neurochem 126(5):591–603. (PMID: 23786406409662910.1111/jnc.12345)
Gsell W, Reichert N, Youdim MB, Riederer P (1995) Interaction of neuroprotective substances with human brain superoxide dismutase. An in vitro study. J Neural Transm Suppl 45:271–279. (PMID: 8748635)
Chu M, Teng J, Guo L, Wang Y, Zhang L, Gao J, Liu L (2021) Mild hyperhomocysteinemia induces blood-brain barrier dysfunction but not neuroinflammation in the cerebral cortex and hippocampus of wild-type mice. Can J Physiol Pharmacol 99(9):847–856. (PMID: 3416115810.1139/cjpp-2020-0507)
Guttormsen AB, Mansoor AM, Fiskerstrand T, Ueland PM, Refsum H (1993) Kinetics of plasma homocysteine in healthy subjects after peroral homocysteine loading. Clin Chem 39(7):1390–1397. (PMID: 833039510.1093/clinchem/39.7.1390)
Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci U S A 94(11):5923–5928. (PMID: 91591762088210.1073/pnas.94.11.5923)
Jara-Prado A, Ortega-Vazquez A, Martinez-Ruano L, Rios C, Santamaria A (2003) Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox Res 5(4):237–243. (PMID: 1283511510.1007/BF03033381)
Zafra F, Ibanez I, Bartolome-Martin D, Piniella D, Arribas-Blazquez M, Gimenez C (2017) Glycine transporters and its coupling with NMDA receptors. Adv Neurobiol 16:55–83. (PMID: 2882860610.1007/978-3-319-55769-4_4)
Folbergrova J (1994) NMDA and not non-NMDA receptor antagonists are protective against seizures induced by homocysteine in neonatal rats. Exp Neurol 130(2):344–350. (PMID: 786776410.1006/exnr.1994.1213)
Cervetto C, Venturini A, Passalacqua M, Guidolin D, Genedani S, Fuxe K, Borroto-Esquela DO, Cortelli P et al (2017) A2A–D2 receptor-receptor interaction modulates gliotransmitter release from striatal astrocyte processes. J Neurochem 140(2):268–279. (PMID: 2789680910.1111/jnc.13885)
Cervetto C, Venturini A, Guidolin D, Maura G, Passalacqua M, Tacchetti C, Cortelli P, Genedani S et al (2018) Homocysteine and A2A–D2 receptor-receptor interaction at striatal astrocyte processes. J Mol Neurosci 65(4):456–466. (PMID: 3003076310.1007/s12031-018-1120-4)
Kredich NM, Martin DV Jr (1977) Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell 12(4):931–938. (PMID: 59786310.1016/0092-8674(77)90157-X)
Hauser RA, Schwarzschild MA (2005) Adenosine A2A receptor antagonists for Parkinson’s disease: rationale, therapeutic potential and clinical experience. Drugs Aging 22(6):471–482. (PMID: 1597463810.2165/00002512-200522060-00002)
Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19(13):1854–1856. (PMID: 1616006310.1096/fj.05-3724fje)
Kimura H, Shibuya N, Kimura Y (2012) Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal 17(1):45–57. (PMID: 22229673334256110.1089/ars.2011.4345)
Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H (2009) 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11(4):703–714. (PMID: 1885552210.1089/ars.2008.2253)
Schalinske KL, Smazal AL (2012) Homocysteine imbalance: a pathological metabolic marker. Adv Nutr 3(6):755–762. (PMID: 23153729364869910.3945/an.112.002758)
Nagpure BV, Bian JS (2015) Brain, learning, and memory: role of H2S in neurodegenerative diseases. Handb Exp Pharmacol 230:193–215. (PMID: 2616283610.1007/978-3-319-18144-8_10)
Talaei F, Bouma HR, Van der Graaf AC, Strijkstra AM, Schmidt M, Henning RH (2011) Serotonin and dopamine protect from hypothermia/rewarming damage through the CBS/H2S pathway. PLoS ONE 6(7):e22568. (PMID: 21829469314490510.1371/journal.pone.0022568)
Fuchs D, Jaeger M, Widner B, Wirleitner B, Artner-Dworzak E, Leblhuber F (2001) Is hyperhomocysteinemia due to the oxidative depletion of folate rather than to insufficient dietary intake? Clin Chem Lab Med 39(8):691–694. (PMID: 1159243410.1515/CCLM.2001.113)
Sunden SL, Renduchintala MS, Park EI, Miklasz SD, Garrow TA (1997) Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch Biochem Biophys 345(1):171–174. (PMID: 928132510.1006/abbi.1997.0246)
Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1(5):228–237. (PMID: 1553920910.1016/0955-2863(90)90070-2)
Tallan HH, Moore S, Stein WH (1958) L-cystathionine in human brain. J Biol Chem 230(2):707–716. (PMID: 1352538810.1016/S0021-9258(18)70493-6)
Diwakar L, Ravindranath V (2007) Inhibition of cystathionine-gamma-lyase leads to loss of glutathione and aggravation of mitochondrial dysfunction mediated by excitatory amino acid in the CNS. Neurochem Int 50(2):418–426. (PMID: 1709512110.1016/j.neuint.2006.09.014)
Eto K, Kimura H (2002) The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-L-methionine in mouse brain. J Neurochem 83(1):80–86. (PMID: 1235873110.1046/j.1471-4159.2002.01097.x)
Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281(47):35785–35793. (PMID: 1700556110.1074/jbc.M602799200)
Yang Q, He GW (2019) Imbalance of homocysteine and H2S: significance, mechanisms, and therapeutic promise in vascular injury. Oxid Med Cell Longev 2019:7629673. (PMID: 31885816689324310.1155/2019/7629673)
Kabil O, Vitvitsky V, Xie P, Banerjee R (2011) The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15(2):363–372. (PMID: 21254839311881710.1089/ars.2010.3781)
Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13(11):1763–1811. (PMID: 20446769296648210.1089/ars.2009.3074)
Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R (2009) H2S biogenesis by human cystathionine gamma-lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284(17):11601–11612. (PMID: 19261609267016510.1074/jbc.M808026200)
Nakano S, Ishii I, Shinmura K, Tamaki K, Hishiki T, Akahoshi N, Ida T, Nakanishi T et al (2015) Hyperhomocysteinemia abrogates fasting-induced cardioprotection against ischemia/reperfusion by limiting bioavailability of hydrogen sulfide anions. J Mol Med (Berl) 93(8):879–889. (PMID: 2574007910.1007/s00109-015-1271-5)
Kumar M, Sandhir R (2018) Hydrogen sulfide in physiological and pathological mechanisms in brain. CNS Neurol Disord Drug Targets 17(9):654–670. (PMID: 2986602410.2174/1871527317666180605072018)
Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439(3):479–485. (PMID: 2173291410.1042/BJ20110841)
Bilska-Wilkosz A, Iciek M, Kowalczyk-Pachel D, Gorny M, Sokolowska-Jezewicz M, Wlodek L (2017) Lipoic acid as a possible pharmacological source of hydrogen sulfide/sulfane sulfur. Molecules 22(3):388. (PMID: 28257119615542710.3390/molecules22030388)
Yadav PK, Vitvitsky V, Carballal S, Seravalli J, Banerjee R (2020) Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations. J Biol Chem 295(19):6299–6311. (PMID: 32179647721264510.1074/jbc.RA120.012616)
Tyagi N, Moshal KS, Sen U, Vacek TP, Kumar M, Hughes WM Jr, Kundu S, Tyagi SC (2009) H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal 11(1):25–33. (PMID: 18837652274291010.1089/ars.2008.2073)
Sun H, Yang J, Shi Y, Wang Y, Li C, Zhu M (2020) Hydrogen sulfide in the nucleus tractus solitarii regulates gastric acid secretion in rats. J Physiol Pharmacol 71(4). https://doi.org/10.26402/jpp.2020.4.05.
Saberian S, Rowan P, Hammes F, Patel P, Fernandez-Cortes F, Buesch K, Beitia Ortiz de Zarate I (2022) Burden of illness of aromatic L-amino acid decarboxylase deficiency: a survey of physicians in Southern Europe. Curr Med Res Opin 38(7):1115–1123. (PMID: 3557517010.1080/03007995.2022.2078097)
Untereiner A, Wu L (2018) Hydrogen sulfide and glucose homeostasis: a tale of sweet and the stink. Antioxid Redox Signal 28(16):1463–1482. (PMID: 2869940710.1089/ars.2017.7046)
Umhau JC, Petrulis SG, Diaz R, Rawlings R, George DT (2003) Blood glucose is correlated with cerebrospinal fluid neurotransmitter metabolites. Neuroendocrinology 78(6):339–343. (PMID: 1468844710.1159/000074887)
Chen NC, Yang F, Capecci LM, Gu Z, Schafer AI, Durante W, Yang XF, Wang H (2010) Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB J 24(8):2804–2817. (PMID: 20305127290927610.1096/fj.09-143651)
Caudill MA, Wang JC, Melnyk S, Pogribny IP, Jernigan S, Collins MD, Santos-Guzman J, Swendseid ME et al (2001) Intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine beta-synthase heterozygous mice. J Nutr 131(11):2811–2818. (PMID: 1169460110.1093/jn/131.11.2811)
Miller AL (2003) The methionine-homocysteine cycle and its effects on cognitive diseases. Altern Med Rev 8(1):7–19. (PMID: 12611557)
Ivanov AV, Dubchenko EA, Kruglova MP, Virus ED, Bulgakova PO, Alexandrin VV, Fedoseev AN, Boyko AN et al (2019) Determination of S-adenosylmethionine and S-adenosylhomocysteine in blood plasma by UPLC with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 1124:366–374. (PMID: 3129572310.1016/j.jchromb.2019.06.032)
Surtees R, Hyland K (1990) L-3,4-dihydroxyphenylalanine (levodopa) lowers central nervous system S-adenosylmethionine concentrations in humans. J Neurol Neurosurg Psychiatry 53(7):569–572. (PMID: 239151948813110.1136/jnnp.53.7.569)
Nieraad H, de Bruin N, Arne O, Hofmann MCJ, Gurke R, Schmidt D, Ritter M, Parnham MJ et al (2021) Effects of Alzheimer-like pathology on homocysteine and homocysteic acid levels-an exploratory in vivo kinetic study. Int J Mol Sci 22(2):927. (PMID: 33477684783193710.3390/ijms22020927)
Olney JW, Price MT, Salles KS, Labruyere J, Ryerson R, Mahan K, Frierdich G, Samson L (1987) L-homocysteic acid: an endogenous excitotoxic ligand of the NMDA receptor. Brain Res Bull 19(5):597–602. (PMID: 289141810.1016/0361-9230(87)90077-3)
Sommer S, Hunzinger C, Schillo S, Klemm M, Biefang-Arndt K, Schwall G, Putter S, Hoelzer K et al (2004) Molecular analysis of homocysteic acid-induced neuronal stress. J Proteome Res 3(3):572–581. (PMID: 1525343910.1021/pr034115o)
Gortz P, Hoinkes A, Fleischer W, Otto F, Schwahn B, Wendel U, Siebler M (2004) Implications for hyperhomocysteinemia: not homocysteine but its oxidized forms strongly inhibit neuronal network activity. J Neurol Sci 218(1–2):109–114. (PMID: 1475964210.1016/j.jns.2003.11.009)
Folbergrova J, Haugvicova R, Mares P (2000) Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists. Exp Neurol 161(1):336–345. (PMID: 1068329910.1006/exnr.1999.7264)
Hasegawa T, Mikoda N, Kitazawa M, LaFerla FM (2010) Treatment of Alzheimer’s disease with anti-homocysteic acid antibody in 3xTg-AD male mice. PLoS ONE 5(1):e8593. (PMID: 20098691280833610.1371/journal.pone.0008593)
Hasegawa T, Ukai W (2016) Targeting therapy for homocysteic acid in the blood represents a potential recovery treatment for cognition in Alzheimer’s disease patients. Aging (Albany NY) 8(9):1838–1843. (PMID: 2763256910.18632/aging.101046)
Kojima K, Nakajima T, Taga N, Miyauchi A, Kato M, Matsumoto A, Ikeda T, Nakamura K et al (2019) Gene therapy improves motor and mental function of aromatic l-amino acid decarboxylase deficiency. Brain 142(2):322–333. (PMID: 30689738637718410.1093/brain/awy331)
Blandini F, Nappi G, Fancellu R, Mangiagalli A, Samuele A, Riboldazzi G, Calandrella D, Pacchetti C et al (2003) Modifications of plasma and platelet levels of L-DOPA and its direct metabolites during treatment with tolcapone or entacapone in patients with Parkinson’s disease. J Neural Transm (Vienna) 110(8):911–922. (PMID: 1289834610.1007/s00702-003-0004-z)
Muller T, Muhlack S (2009) Peripheral COMT inhibition prevents levodopa associated homocysteine increase. J Neural Transm (Vienna) 116(10):1253–1256. (PMID: 1965758710.1007/s00702-009-0275-0)
Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT (2010) Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: in vitro and in vivo studies. PLoS ONE 5(8):e11951. (PMID: 20700524291681810.1371/journal.pone.0011951)
Kang KS, Yamabe N, Wen Y, Fukui M, Zhu BT (2013) Beneficial effects of natural phenolics on levodopa methylation and oxidative neurodegeneration. Brain Res 1497:1–14. (PMID: 2320680010.1016/j.brainres.2012.11.043)
Tang XQ, Shen XT, Huang YE, Chen RQ, Ren YK, Fang HR, Zhuang YY, Wang CY (2011) Inhibition of endogenous hydrogen sulfide generation is associated with homocysteine-induced neurotoxicity: role of ERK1/2 activation. J Mol Neurosci 45(1):60–67. (PMID: 2110445710.1007/s12031-010-9477-z)
Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279(50):52082–52086. (PMID: 1552001210.1074/jbc.C400481200)
Coletta C, Modis K, Szczesny B, Brunyanszki A, Olah G, Rios EC, Yanagi K, Ahmad A et al (2015) Regulation of vascular tone, angiogenesis and cellular bioenergetics by the 3-mercaptopyruvate sulfurtransferase/H2S pathway: functional impairment by hyperglycemia and restoration by DL-alpha-lipoic acid. Mol Med 21(1):1–14. (PMID: 25715337446157410.2119/molmed.2015.00035)
Lockhart B, Jones C, Cuisinier C, Villain N, Peyroulan D, Lestage P (2000) Inhibition of L-homocysteic acid and buthionine sulphoximine-mediated neurotoxicity in rat embryonic neuronal cultures with alpha-lipoic acid enantiomers. Brain Res 855(2):292–297. (PMID: 1067760310.1016/S0006-8993(99)02372-0)
Zhang SF, Xie CL, Lin JY, Wang MH, Wang XJ, Liu ZG (2018) Lipoic acid alleviates LDOPAinduced dyskinesia in 6OHDA parkinsonian rats via antioxidative stress. Mol Med Rep 17(1):1118–1124. (PMID: 29115484)
Mao J, Gao H, Bai W, Zeng H, Ren Y, Liu Y, Yang X (2021) Lipoic acid alleviates LPS-evoked PC12 cell damage by targeting p53 and inactivating the NF-kappaB pathway. Acta Neurobiol Exp (Wars) 81(4):375–385. (PMID: 35014986)
VonVoigtlander PF, Fici GJ, Althaus JS (1998) Pharmacological approaches to counter the toxicity of Dopa. Amino Acids 14(1–3):189–196. (PMID: 987146010.1007/BF01345261)
Cheng N, Maeda T, Kume T, Kaneko S, Kochiyama H, Akaike A, Goshima Y, Misu Y (1996) Differential neurotoxicity induced by L-DOPA and dopamine in cultured striatal neurons. Brain Res 743(1–2):278–283. (PMID: 901725610.1016/S0006-8993(96)01056-6)
Machado FR, Ferreira AG, da Cunha AA, Tagliari B, Mussulini BH, Wofchuk S, Wyse AT (2011) Homocysteine alters glutamate uptake and Na+, K+-ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab Brain Dis 26(1):61–67. (PMID: 2128739910.1007/s11011-011-9232-3)
Khanna S, Roy S, Parinandi NL, Maurer M, Sen CK (2006) Characterization of the potent neuroprotective properties of the natural vitamin E alpha-tocotrienol. J Neurochem 98(5):1474–1486. (PMID: 16923160184762810.1111/j.1471-4159.2006.04000.x)
Fahn S (1992) A pilot trial of high-dose alpha-tocopherol and ascorbate in early Parkinson’s disease. Ann Neurol 32(Suppl):S128–S132. (PMID: 151037110.1002/ana.410320722)
Kubis AM, Piwowar A (2015) The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev 24(Pt B):126–137. (PMID: 2623841110.1016/j.arr.2015.07.008)
Lima LAR, Lopes MJP, Costa RO, Lima FAV, Neves KRT, Calou IBF, Andrade GM, Viana GSB (2018) Vitamin D protects dopaminergic neurons against neuroinflammation and oxidative stress in hemiparkinsonian rats. J Neuroinflammation 15(1):249. (PMID: 30170624611924010.1186/s12974-018-1266-6)
Orme RP, Middleditch C, Waite L, Fricker RA (2016) The role of vitamin D(3) in the development and neuroprotection of midbrain dopamine neurons. Vitam Horm 100:273–297. (PMID: 2682795610.1016/bs.vh.2015.10.007)
Suzuki M, Yoshioka M, Hashimoto M, Murakami M, Noya M, Takahashi D, Urashima M (2013) Randomized, double-blind, placebo-controlled trial of vitamin D supplementation in Parkinson disease. Am J Clin Nutr 97(5):1004–1013. (PMID: 2348541310.3945/ajcn.112.051664)
Park KH, Choi NY, Koh SH, Park HH, Kim YS, Kim MJ, Lee SJ, Yu HJ et al (2011) L-DOPA neurotoxicity is prevented by neuroprotective effects of erythropoietin. Neurotoxicology 32(6):879–887. (PMID: 2168373610.1016/j.neuro.2011.05.009)
Yamamoto M, Koshimura K, Kawaguchi M, Sohmiya M, Murakami Y, Kato Y (2000) Stimulating effect of erythropoietin on the release of dopamine and acetylcholine from the rat brain slice. Neurosci Lett 292(2):131–133. (PMID: 1099856610.1016/S0304-3940(00)01441-5)
Huang CK, Chang YT, Amstislavskaya TG, Tikhonova MA, Lin CL, Hung CS, Lai TJ, Ho YJ (2015) Synergistic effects of ceftriaxone and erythropoietin on neuronal and behavioral deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Behav Brain Res 294:198–207. (PMID: 2629666810.1016/j.bbr.2015.08.011)
Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (2010) Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9(2):135–146. (PMID: 2004185810.1111/j.1474-9726.2009.00543.x)
Kida K, Yamada M, Tokuda K, Marutani E, Kakinohana M, Kaneki M, Ichinose F (2011) Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson’s disease. Antioxid Redox Signal 15(2):343–352. (PMID: 21050138311861010.1089/ars.2010.3671)
Hayden LJ, Goeden H, Roth SH (1990) Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats. J Toxicol Environ Health 31(1):45–52. (PMID: 221392110.1080/15287399009531436)
Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18(15):1906–1919. (PMID: 2317657110.1089/ars.2012.4645)
Vandiver MS, Paul BD, Xu R, Karuppagounder S, Rao F, Snowman AM, Ko HS, Lee YI et al (2013) Sulfhydration mediates neuroprotective actions of parkin. Nat Commun 4:1626. (PMID: 2353564710.1038/ncomms2623)
Zhou L, Wang Q (2023) Advances of H(2)S in regulating neurodegenerative diseases by preserving mitochondria function. Antioxidants (Basel) 12(3):652. (PMID: 3697890010.3390/antiox12030652)
Kimura H (2013) Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem Int 63(5):492–497. (PMID: 2403636510.1016/j.neuint.2013.09.003)
Martin I, Dawson VL, Dawson TM (2011) Recent advances in the genetics of Parkinson’s disease. Annu Rev Genomics Hum Genet 12:301–325. (PMID: 21639795412023610.1146/annurev-genom-082410-101440)
Lu SC, Mato JM (2012) S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev 92(4):1515–1542. (PMID: 2307362510.1152/physrev.00047.2011)
Di Rocco A, Rogers JD, Brown R, Werner P, Bottiglieri T (2000) S-adenosyl-methionine improves depression in patients with Parkinson’s disease in an open-label clinical trial. Mov Disord 15(6):1225–1229. (PMID: 1110421010.1002/1531-8257(200011)15:6<1225::AID-MDS1025>3.0.CO;2-A)
Bostantjopoulou S, Kyriazis G, Katsarou Z, Kiosseoglou G, Kazis A, Mentenopoulos G (1997) Superoxide dismutase activity in early and advanced Parkinson’s disease. Funct Neurol 12(2):63–68. (PMID: 9238339)
Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67(3):269–274. (PMID: 373701510.1016/0304-3940(86)90320-4)
Peng J, Stevenson FF, Doctrow SR, Andersen JK (2005) Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem 280(32):29194–29198. (PMID: 1594693710.1074/jbc.M500984200)
Asanuma M, Miyazaki I (2021) Glutathione and related molecules in parkinsonism. Int J Mol Sci 22(16):8689. (PMID: 34445395839539010.3390/ijms22168689)
Ihara Y, Chuda M, Kuroda S, Hayabara T (1999) Hydroxyl radical and superoxide dismutase in blood of patients with Parkinson’s disease: relationship to clinical data. J Neurol Sci 170(2):90–95. (PMID: 1056152310.1016/S0022-510X(99)00192-6)
Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdium MB, Naoi M (2002) Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 24(5):675–682. (PMID: 1220019810.1016/S0892-0362(02)00221-0)
Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, Yao H, Song N et al (2020) Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun 11(1):941. (PMID: 32071304702900010.1038/s41467-020-14788-x)
Zhang J, Wang M, Zhao Y, Zhang Y, Gao Y, Zhang X, Yang G (2022) Alpha-lipoic acid improved motor function in MPTP-induced Parkinsonian mice by reducing neuroinflammation in the nigral and spinal cord. Neurosci Lett 781:136669. (PMID: 3549090510.1016/j.neulet.2022.136669)
Solmonson A, DeBerardinis RJ (2018) Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem 293(20):7522–7530. (PMID: 2919183010.1074/jbc.TM117.000259)
Vatassery GT, Smith WE, Quach HT (2006) Effect of oxidative stress induced by L-dopa on endogenous antioxidants in PC-12 cells. Ann N Y Acad Sci 1074:330–336. (PMID: 1710592910.1196/annals.1369.030)
Han SK, Cohen G (1996) Inhibition of catalase in mesencephalic cultures by L-DOPA and dopamine. Neurochem Int 29(6):645–649. (PMID: 911313210.1016/S0197-0186(96)00029-0)
Saito Y, Nishio K, Akazawa YO, Yamanaka K, Miyama A, Yoshida Y, Noguchi N, Niki E (2010) Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic Biol Med 49(10):1542–1549. (PMID: 2073606110.1016/j.freeradbiomed.2010.08.016)
Dysken MW, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, Love S, Schellenberg GD et al (2014) Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA 311(1):33–44. (PMID: 24381967410989810.1001/jama.2013.282834)
Peterson AL, Mancini M, Horak FB (2013) The relationship between balance control and vitamin D in Parkinson’s disease-a pilot study. Mov Disord 28(8):1133–1137. (PMID: 2355400310.1002/mds.25405)
Gascon-Barre M, Huet PM (1983) Apparent [3H]1,25-dihydroxyvitamin D3 uptake by canine and rodent brain. Am J Physiol 244(3):E266–E271. (PMID: 6687510)
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G (2016) Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 96(1):365–408. (PMID: 2668179510.1152/physrev.00014.2015)
Kato S (2000) The function of vitamin D receptor in vitamin D action. J Biochem 127(5):717–722. (PMID: 1078877810.1093/oxfordjournals.jbchem.a022662)
Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29(1):21–30. (PMID: 1558969910.1016/j.jchemneu.2004.08.006)
Wakhloo D, Scharkowski F, Curto Y, Javed Butt U, Bansal V, Steixner-Kumar AA, Wustefeld L, Rajput A et al (2020) Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun 11(1):1313. (PMID: 32152318706277910.1038/s41467-020-15041-1)
Garcia-Llano M, Pedroso-Ibanez I, Morales-Chacon L, Rodriguez-Obaya T, Perez-Ruiz L, Sosa-Teste I, Amaro-Gonzalez D, Bringas-Vega ML (2021) Short-term tolerance of nasally-administered NeuroEPO in patients with Parkinson disease. MEDICC Rev 23(1):49–54. (PMID: 33780423)
فهرسة مساهمة: Keywords: Antioxidants; Inborn error of metabolism; Methylation status; Neuroinflammation; Parkinson’s disease; Rare genetic disease; Sulfur-containing compounds
المشرفين على المادة: EC 4.1.1.28 (Aromatic-L-Amino-Acid Decarboxylases)
SCR Disease Name: Aromatic amino acid decarboxylase deficiency
تواريخ الأحداث: Date Created: 20231112 Date Completed: 20240424 Latest Revision: 20240625
رمز التحديث: 20240625
DOI: 10.1007/s12035-023-03684-2
PMID: 37953352
قاعدة البيانات: MEDLINE
الوصف
تدمد:1559-1182
DOI:10.1007/s12035-023-03684-2