دورية أكاديمية

Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model.

التفاصيل البيبلوغرافية
العنوان: Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model.
المؤلفون: Saito K; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.; GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan., Shigetomi E; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.; GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan., Shinozaki Y; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.; GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan., Kobayashi K; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan., Parajuli B; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.; GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan., Kubota Y; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan., Sakai K; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.; GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan., Miyakawa M; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.; GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan., Horiuchi H; Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan., Nabekura J; Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan., Koizumi S; Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan.; GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan.
المصدر: Brain : a journal of neurology [Brain] 2024 Feb 01; Vol. 147 (2), pp. 698-716.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Oxford University Press Country of Publication: England NLM ID: 0372537 Publication Model: Print Cited Medium: Internet ISSN: 1460-2156 (Electronic) Linking ISSN: 00068950 NLM ISO Abbreviation: Brain Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Oxford University Press
Original Publication: London.
مواضيع طبية MeSH: Alexander Disease*/metabolism , Alexander Disease*/pathology, Mice ; Animals ; Glial Fibrillary Acidic Protein/metabolism ; Astrocytes/metabolism ; Microglia/metabolism ; Clopidogrel/metabolism ; Calcium/metabolism ; Disease Progression ; Adenosine Triphosphate/metabolism
مستخلص: Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.
(© The Author(s) 2023. Published by Oxford University Press on behalf of the Guarantors of Brain.)
References: J Neurosci. 2014 Aug 6;34(32):10528-40. (PMID: 25100587)
Cell. 2007 Dec 14;131(6):1047-58. (PMID: 18083096)
Cell Rep. 2022 Feb 22;38(8):110416. (PMID: 35196485)
Elife. 2020 Oct 15;9:. (PMID: 33054973)
Sci Rep. 2018 Aug 17;8(1):12389. (PMID: 30120299)
J Neurosci. 2008 May 7;28(19):4949-56. (PMID: 18463248)
Front Neurosci. 2021 Jul 27;15:710473. (PMID: 34385905)
Aging Dis. 2021 Dec 1;12(8):2125-2139. (PMID: 34881090)
Glia. 2018 May;66(5):1053-1067. (PMID: 29383757)
Stroke. 2021 Jan;52(1):274-283. (PMID: 33161850)
Sci Adv. 2022 Jun 17;8(24):eabo1286. (PMID: 35714196)
Nat Commun. 2016 Aug 25;7:12540. (PMID: 27558646)
Science. 2011 Sep 9;333(6048):1456-8. (PMID: 21778362)
Cell. 2017 Jun 15;169(7):1276-1290.e17. (PMID: 28602351)
J Neurosci Res. 2018 Feb;96(2):180-193. (PMID: 28509351)
Neurology. 2011 Sep 27;77(13):1287-94. (PMID: 21917775)
Neuron. 2022 Mar 2;110(5):770-782.e5. (PMID: 34942116)
Nat Neurosci. 2019 Nov;22(11):1936-1944. (PMID: 31570865)
Immunity. 2019 Jan 15;50(1):253-271.e6. (PMID: 30471926)
J Neuroinflammation. 2021 Mar 8;18(1):67. (PMID: 33685480)
Trends Immunol. 2009 Aug;30(8):392-400. (PMID: 19643666)
Nat Commun. 2020 Mar 5;11(1):1220. (PMID: 32139688)
Aging Cell. 2018 Dec;17(6):e12832. (PMID: 30276955)
Brain Res Bull. 2018 Oct;143:234-245. (PMID: 30266587)
J Neurosci Res. 2008 May 15;86(7):1511-9. (PMID: 18183622)
Front Immunol. 2021 Oct 11;12:715311. (PMID: 34707603)
J Neurosci. 2001 Mar 15;21(6):1975-82. (PMID: 11245682)
Pharmacol Rev. 2006 Sep;58(3):281-341. (PMID: 16968944)
Biochim Biophys Acta. 2011 May;1813(5):1014-24. (PMID: 21056596)
Glia. 2010 May;58(7):790-801. (PMID: 20091784)
Cell. 2020 Aug 20;182(4):976-991.e19. (PMID: 32702314)
Front Mol Neurosci. 2015 May 08;8:12. (PMID: 26005403)
Sci Rep. 2016 Apr 04;6:23903. (PMID: 27041678)
Neuron. 2021 May 19;109(10):1657-1674.e7. (PMID: 33831349)
Glia. 2013 Feb;61(2):210-24. (PMID: 23018918)
J Exp Med. 2018 Sep 3;215(9):2235-2245. (PMID: 30082275)
Handb Clin Neurol. 2018;148:693-700. (PMID: 29478608)
J Clin Neurosci. 2020 May;75:221-223. (PMID: 32223977)
Immunity. 2017 Sep 19;47(3):566-581.e9. (PMID: 28930663)
Acta Neuropathol. 2015 Oct;130(4):469-86. (PMID: 26296699)
Glia. 2013 Jan;61(1):47-54. (PMID: 22674620)
Brain. 1949 Sep;72(3):373-81, 3 pl. (PMID: 15409268)
J Neurosci. 2009 Apr 1;29(13):3974-80. (PMID: 19339593)
Sci Rep. 2016 Dec 06;6:38276. (PMID: 27922063)
J Neurol Neurosurg Psychiatry. 2010 Nov;81(11):1292-3. (PMID: 20562394)
Int J Mol Sci. 2017 Nov 08;18(11):. (PMID: 29117112)
Nat Neurosci. 2018 Oct;21(10):1359-1369. (PMID: 30258234)
J Cereb Blood Flow Metab. 2019 Nov;39(11):2144-2156. (PMID: 30334687)
Elife. 2020 Jul 27;9:. (PMID: 32716294)
Cell. 2019 May 16;177(5):1280-1292.e20. (PMID: 31031006)
Hum Mol Genet. 2005 Aug 15;14(16):2443-58. (PMID: 16014634)
Brain Behav Immun. 2020 Jul;87:243-255. (PMID: 31837418)
Nature. 2021 Sep;597(7878):709-714. (PMID: 34497421)
Cell Rep. 2022 Jun 14;39(11):110961. (PMID: 35705056)
Neurosci Lett. 2006 Oct 23;407(2):127-30. (PMID: 16949206)
J Neurol. 2011 Nov;258(11):1998-2008. (PMID: 21533827)
J Biol Chem. 2001 Mar 16;276(11):8608-15. (PMID: 11104774)
Glia. 2021 Nov;69(11):2618-2643. (PMID: 34310753)
Physiol Rev. 2011 Apr;91(2):461-553. (PMID: 21527731)
J Neuroinflammation. 2020 Apr 1;17(1):97. (PMID: 32238175)
J Neurochem. 2010 Oct;115(2):450-9. (PMID: 20681951)
Redox Biol. 2018 Jun;16:104-112. (PMID: 29499563)
Glia. 2021 Jul;69(7):1637-1653. (PMID: 33369790)
Cell Rep. 2018 Jan 2;22(1):269-285. (PMID: 29298427)
Cell Rep. 2017 May 9;19(6):1151-1164. (PMID: 28494865)
Glia. 2021 Oct;69(10):2332-2348. (PMID: 34309082)
Glia. 2007 Apr 15;55(6):617-31. (PMID: 17299771)
ACS Chem Neurosci. 2021 Mar 17;12(6):966-978. (PMID: 33666084)
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1):. (PMID: 33443211)
J Clin Invest. 2016 May 2;126(5):1983-97. (PMID: 27064281)
iScience. 2021 Feb 12;24(3):102186. (PMID: 33718838)
J Neurosci. 2020 Sep 2;40(36):6854-6871. (PMID: 32801156)
Neuroscience. 2006;138(2):421-32. (PMID: 16414200)
Nature. 2007 Apr 26;446(7139):1091-5. (PMID: 17410128)
Nat Commun. 2017 Oct 27;8(1):1164. (PMID: 29079839)
J Biol Chem. 2002 Aug 30;277(35):31390-400. (PMID: 12080041)
Biochemistry. 2002 Feb 12;41(6):1947-56. (PMID: 11827541)
Cell. 2015 Sep 24;163(1):55-67. (PMID: 26406371)
Glia. 2018 Jan;66(1):47-61. (PMID: 28795439)
BMC Neurol. 2021 Oct 2;21(1):381. (PMID: 34600516)
J Immunol. 2000 Oct 15;165(8):4658-66. (PMID: 11035109)
Nat Med. 2017 Sep 8;23(9):1018-1027. (PMID: 28886007)
Nat Neurosci. 2005 Jun;8(6):752-8. (PMID: 15895084)
J Neurosci. 2013 Apr 24;33(17):7439-50. (PMID: 23616550)
ASN Neuro. 2022 Jan-Dec;14:17590914221102068. (PMID: 35593054)
Cell. 2019 Jun 13;177(7):1888-1902.e21. (PMID: 31178118)
Cell Rep. 2017 Oct 10;21(2):366-380. (PMID: 29020624)
Nat Commun. 2016 Mar 07;7:10905. (PMID: 26948129)
J Cell Biochem. 2019 Oct;120(10):17584-17592. (PMID: 31218751)
Mol Neurobiol. 2017 Dec;54(10):7567-7584. (PMID: 27830532)
Nat Rev Neurosci. 2018 Oct;19(10):622-635. (PMID: 30206328)
Nat Neurosci. 2006 Dec;9(12):1512-9. (PMID: 17115040)
Nature. 2020 Oct;586(7829):417-423. (PMID: 32999463)
Neurobiol Aging. 2017 May;53:36-47. (PMID: 28208064)
Immunity. 2021 Oct 12;54(10):2194-2208. (PMID: 34644556)
Glia. 2021 Sep;69(9):2291-2304. (PMID: 34080730)
معلومات مُعتمدة: JP17K01974 JSPS KAKENHI; JP20gm1310008 AMED-CREST; OPERA
فهرسة مساهمة: Keywords: Alexander disease; astrocyte-microglia interactions; microglial ca2+ signal; single-cell RNA sequencing; two-photon imaging
المشرفين على المادة: 0 (Glial Fibrillary Acidic Protein)
A74586SNO7 (Clopidogrel)
SY7Q814VUP (Calcium)
8L70Q75FXE (Adenosine Triphosphate)
تواريخ الأحداث: Date Created: 20231113 Date Completed: 20240205 Latest Revision: 20240306
رمز التحديث: 20240307
مُعرف محوري في PubMed: PMC10834242
DOI: 10.1093/brain/awad358
PMID: 37955589
قاعدة البيانات: MEDLINE
الوصف
تدمد:1460-2156
DOI:10.1093/brain/awad358