Breast Cancer Macrophage Heterogeneity and Self-renewal are Determined by Spatial Localization.

التفاصيل البيبلوغرافية
العنوان: Breast Cancer Macrophage Heterogeneity and Self-renewal are Determined by Spatial Localization.
المؤلفون: Ben-Chetrit N; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA.; These authors contributed equally., Niu X; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA.; These authors contributed equally.; Present address: Genentech, Inc., South San Francisco, CA, USA., Sotelo J; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA., Swett AD; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA., Rajasekhar VK; Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Jiao MS; Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Stewart CM; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA., Bhardwaj P; Department of Medicine, Weill Cornell Medical College, New York, NY, USA., Kottapalli S; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA., Ganesan S; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA., Loyher PL; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Potenski C; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA., Hannuna A; Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel., Brown KA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA., Iyengar NM; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Giri DD; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Lowe SW; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA., Healey JH; Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Geissmann F; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA., Sagi I; Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel., Joyce JA; Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Switzerland., Landau DA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.; New York Genome Center, New York, NY, USA.
المصدر: BioRxiv : the preprint server for biology [bioRxiv] 2023 Oct 27. Date of Electronic Publication: 2023 Oct 27.
نوع المنشور: Preprint
اللغة: English
بيانات الدورية: Country of Publication: United States NLM ID: 101680187 Publication Model: Electronic Cited Medium: Internet NLM ISO Abbreviation: bioRxiv Subsets: PubMed not MEDLINE
مستخلص: Tumor-infiltrating macrophages support critical steps in tumor progression, and their accumulation in the tumor microenvironment (TME) is associated with adverse outcomes and therapeutic resistance across human cancers. In the TME, macrophages adopt diverse phenotypic alterations, giving rise to heterogeneous immune activation states and induction of cell cycle. While the transcriptional profiles of these activation states are well-annotated across human cancers, the underlying signals that regulate macrophage heterogeneity and accumulation remain incompletely understood. Here, we leveraged a novel ex vivo organotypic TME (oTME) model of breast cancer, in vivo murine models, and human samples to map the determinants of functional heterogeneity of TME macrophages. We identified a subset of F4/80 high Sca-1+ self-renewing macrophages maintained by type-I interferon (IFN) signaling and requiring physical contact with cancer-associated fibroblasts. We discovered that the contact-dependent self-renewal of TME macrophages is mediated via Notch4, and its inhibition abrogated tumor growth of breast and ovarian carcinomas in vivo , as well as lung dissemination in a PDX model of triple-negative breast cancer (TNBC). Through spatial multi-omic profiling of protein markers and transcriptomes, we found that the localization of macrophages further dictates functionally distinct but reversible phenotypes, regardless of their ontogeny. Whereas immune-stimulatory macrophages (CD11C+CD86+) populated the tumor epithelial nests, the stroma-associated macrophages (SAMs) were proliferative, immunosuppressive (Sca-1+CD206+PD-L1+), resistant to CSF-1R depletion, and associated with worse patient outcomes. Notably, following cessation of CSF-1R depletion, macrophages rebounded primarily to the SAM phenotype, which was associated with accelerated growth of mammary tumors. Our work reveals the spatial determinants of macrophage heterogeneity in breast cancer and highlights the disruption of macrophage self-renewal as a potential new therapeutic strategy.
Competing Interests: The authors. D.A.L and N.B.-C are co-inventors on a patent application filed by Weill Cornell Medicine related to the findings in this manuscript. DAL has served as a consultant for Abbvie, AstraZeneca and Illumina and is on the Scientific Advisory Board of Mission Bio, Pangea, Alethiomics, and C2i Genomics; DAL has received prior research funding from BMS, 10x Genomics, Ultima Genomics, and Illumina unrelated to the current manuscript.
References: Nat Commun. 2019 Jan 17;10(1):281. (PMID: 30655530)
Blood. 2003 Jan 15;101(2):517-23. (PMID: 12393491)
Cell. 2016 Aug 11;166(4):991-1003. (PMID: 27477514)
Science. 2014 May 23;344(6186):921-5. (PMID: 24812208)
Cell Rep. 2023 Feb 28;42(2):112040. (PMID: 36701231)
Cell Metab. 2014 Jan 7;19(1):162-171. (PMID: 24374218)
Nat Med. 2016 Aug;22(8):933-9. (PMID: 27322743)
Nat Cell Biol. 2019 Jun;21(6):674-686. (PMID: 31160712)
Nat Rev Immunol. 2006 Sep;6(9):644-58. (PMID: 16932750)
Bioinformatics. 2016 Apr 15;32(8):1241-3. (PMID: 26668002)
Nucleic Acids Res. 2021 May 21;49(9):e50. (PMID: 33544846)
Sci Signal. 2015 Jan 20;8(360):ra7. (PMID: 25605973)
Sci Immunol. 2020 Feb 21;5(44):. (PMID: 32086381)
Immunity. 2013 Apr 18;38(4):792-804. (PMID: 23601688)
J Exp Med. 2001 Mar 19;193(6):727-40. (PMID: 11257139)
Breast Cancer Res. 2010;12(2):R21. (PMID: 20346151)
Cancer Cell. 2021 Oct 11;39(10):1361-1374.e9. (PMID: 34478639)
Nat Commun. 2018 Dec 4;9(1):5150. (PMID: 30514914)
Cancer Res. 2014 Sep 15;74(18):5057-69. (PMID: 25082815)
Cell. 2023 Sep 28;186(20):4454-4471.e19. (PMID: 37703875)
Science. 2017 Jun 9;356(6342):1026-1030. (PMID: 28596335)
Nat Med. 2008 Dec;14(12):1384-9. (PMID: 19029987)
Cell. 2014 Dec 4;159(6):1327-40. (PMID: 25480297)
Cell. 2002 Apr 19;109(2):169-80. (PMID: 12007404)
Cancer Res. 2015 Sep 1;75(17):3479-91. (PMID: 26269531)
Cell. 2019 Apr 18;177(3):541-555.e17. (PMID: 30955887)
Cell Rep. 2018 May 1;23(5):1239-1248. (PMID: 29719241)
Adv Radiat Oncol. 2021 Mar 03;6(4):100679. (PMID: 34286163)
Immunity. 2013 Jan 24;38(1):79-91. (PMID: 23273845)
Cell. 2021 Feb 4;184(3):792-809.e23. (PMID: 33545035)
Oncogene. 2021 Jan;40(3):475-491. (PMID: 33235291)
Cell. 2018 Aug 23;174(5):1293-1308.e36. (PMID: 29961579)
Nature. 2009 Apr 16;458(7240):904-8. (PMID: 19212321)
Nat Rev Drug Discov. 2018 Dec;17(12):887-904. (PMID: 30361552)
Nat Cell Biol. 2017 Aug;19(8):974-987. (PMID: 28737771)
OMICS. 2012 May;16(5):284-7. (PMID: 22455463)
Genome Biol. 2014;15(12):550. (PMID: 25516281)
Cell Rep. 2021 Apr 13;35(2):108945. (PMID: 33852842)
Nature. 2014 Sep 25;513(7519):559-63. (PMID: 25043024)
N Engl J Med. 1986 Dec 25;315(26):1650-9. (PMID: 3537791)
Science. 2012 Apr 6;336(6077):86-90. (PMID: 22442384)
J Immunother Cancer. 2017 Jul 18;5(1):53. (PMID: 28716061)
Science. 2016 Sep 9;353(6304):. (PMID: 27492475)
Nat Med. 2015 Aug;21(8):938-945. (PMID: 26193342)
Cancer Res. 2014 Apr 1;74(7):2038-49. (PMID: 24520074)
Cold Spring Harb Perspect Biol. 2014 Jun 02;6(6):. (PMID: 24890514)
Science. 2009 Nov 6;326(5954):867-71. (PMID: 19892988)
Genome Biol. 2019 Dec 23;20(1):296. (PMID: 31870423)
Science. 2018 Jun 29;360(6396):. (PMID: 29773667)
Cell Host Microbe. 2016 Oct 12;20(4):458-470. (PMID: 27736644)
Cell. 2021 Jun 24;184(13):3573-3587.e29. (PMID: 34062119)
Cancer Res. 2010 Jul 15;70(14):5728-39. (PMID: 20570887)
Sci Transl Med. 2019 Jul 24;11(502):. (PMID: 31341059)
Nature. 2019 Aug;572(7769):392-396. (PMID: 31367043)
Science. 2017 Jun 9;356(6342):1076-1080. (PMID: 28495878)
Biometrika. 1950 Jun;37(1-2):17-23. (PMID: 15420245)
Cell Rep. 2015 Sep 22;12(11):1902-14. (PMID: 26365184)
Cell. 2018 Jul 26;174(3):716-729.e27. (PMID: 29961576)
Nat Med. 2014 Apr;20(4):436-42. (PMID: 24584119)
Cancer Discov. 2011 Jun;1(1):54-67. (PMID: 22039576)
Nat Biotechnol. 2023 Jun;41(6):788-793. (PMID: 36593397)
Nat Med. 2009 Aug;15(8):907-13. (PMID: 19648928)
Nat Immunol. 2012 Nov;13(11):1118-28. (PMID: 23023392)
Breast Cancer Res. 2006;8(1):R7. (PMID: 16417656)
Immunity. 2020 Feb 18;52(2):357-373.e9. (PMID: 32049051)
Nat Med. 2013 Oct;19(10):1264-72. (PMID: 24056773)
Nat Biotechnol. 2020 Aug;38(8):947-953. (PMID: 32361713)
Nat Cancer. 2020 Jul;1(7):692-708. (PMID: 35122040)
Cell. 2016 Apr 21;165(3):668-78. (PMID: 27062926)
Nature. 2016 Nov 17;539(7629):437-442. (PMID: 27642729)
Science. 2010 Nov 5;330(6005):841-5. (PMID: 20966214)
Genesis. 2007 Sep;45(9):593-605. (PMID: 17868096)
Nat Med. 2018 May;24(5):541-550. (PMID: 29686425)
Nat Neurosci. 2020 Mar;23(3):337-350. (PMID: 32112058)
Sci Rep. 2016 Dec 16;6:35598. (PMID: 27982031)
Bioinformatics. 2016 Sep 15;32(18):2847-9. (PMID: 27207943)
Bioinformatics. 2015 Feb 15;31(4):545-54. (PMID: 25336500)
Immunity. 2015 Oct 20;43(4):803-16. (PMID: 26474656)
Nat Biotechnol. 2018 Jun;36(5):411-420. (PMID: 29608179)
Cancer Immunol Res. 2017 Jan;5(1):3-8. (PMID: 28052991)
PLoS One. 2012;7(6):e39141. (PMID: 22723949)
Nat Med. 2013 Sep;19(9):1166-72. (PMID: 23933982)
Nat Biotechnol. 2018 Dec 03;:. (PMID: 30531897)
Cancer Cell. 2019 May 13;35(5):767-781.e6. (PMID: 31085177)
Nat Commun. 2017 May 05;8:15081. (PMID: 28474673)
Nat Rev Genet. 2019 Nov;20(11):657-674. (PMID: 31358977)
Am J Pathol. 2003 Nov;163(5):2113-26. (PMID: 14578209)
Cell Rep. 2019 Nov 5;29(6):1718-1727.e8. (PMID: 31693907)
Nat Cell Biol. 2019 Sep;21(9):1113-1126. (PMID: 31451770)
Nat Biotechnol. 2018 Jun;36(5):421-427. (PMID: 29608177)
Immunity. 2013 Dec 12;39(6):1070-81. (PMID: 24315994)
Cancer Res. 2006 Dec 1;66(23):11238-46. (PMID: 17114237)
Cell. 2014 Dec 4;159(6):1312-26. (PMID: 25480296)
Cell Syst. 2019 Apr 24;8(4):329-337.e4. (PMID: 30954475)
Nature. 2011 Jun 08;475(7355):222-5. (PMID: 21654748)
Cancer Cell. 2023 Mar 13;41(3):374-403. (PMID: 36917948)
Cancer Cell. 2019 Apr 15;35(4):588-602.e10. (PMID: 30930117)
Bioinformatics. 2013 Jan 1;29(1):15-21. (PMID: 23104886)
Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9312-6. (PMID: 7937762)
Science. 2017 Jun 9;356(6342):1072-1076. (PMID: 28495875)
Cell. 2018 Sep 6;174(6):1373-1387.e19. (PMID: 30193111)
Cancer Cell. 2018 Oct 8;34(4):536-548. (PMID: 30146333)
Nat Immunol. 2012 Jun 24;13(8):753-60. (PMID: 22729249)
Cell. 2018 Feb 8;172(4):744-757.e17. (PMID: 29398113)
Breast Cancer Res Treat. 2011 Aug;128(3):703-711. (PMID: 20842526)
Trends Cell Biol. 2004 Nov;14(11):628-38. (PMID: 15519852)
Cancer Cell. 2021 May 10;39(5):662-677.e6. (PMID: 33861994)
Nat Immunol. 2002 Dec;3(12):1135-41. (PMID: 12415265)
Nat Immunol. 2018 Feb;19(2):108-119. (PMID: 29348500)
Cell. 2021 May 27;184(11):2988-3005.e16. (PMID: 34019793)
EMBO J. 2020 Oct 1;39(19):e104063. (PMID: 32790115)
Nat Cell Biol. 2020 May;22(5):546-558. (PMID: 32341550)
Nature. 2015 Apr 23;520(7548):549-52. (PMID: 25707806)
Science. 2016 Apr 8;352(6282):189-96. (PMID: 27124452)
Nature. 2005 Apr 7;434(7034):772-7. (PMID: 15800576)
Genes Cancer. 2016 Jul;7(7-8):240-253. (PMID: 27738494)
Curr Top Med Chem. 2008;8(1):54-61. (PMID: 18220933)
Nature. 2013 Apr 25;496(7446):445-55. (PMID: 23619691)
Nature. 2021 Jul;595(7868):578-584. (PMID: 34135508)
Genome Res. 2021 Oct;31(10):1843-1855. (PMID: 34035045)
Dev Biol. 2002 Jul 1;247(1):11-25. (PMID: 12074549)
Nat Immunol. 2010 Oct;11(10):889-96. (PMID: 20856220)
Genome Biol. 2015 Dec 10;16:278. (PMID: 26653891)
Breast Cancer Res. 2015 Oct 01;17(1):132. (PMID: 26429062)
Nat Rev Drug Discov. 2022 Nov;21(11):799-820. (PMID: 35974096)
Nature. 2005 Jun 16;435(7044):959-63. (PMID: 15959515)
Nat Immunol. 2017 Jun;18(6):665-674. (PMID: 28459435)
Nature. 2009 Jan 15;457(7227):318-21. (PMID: 19037245)
Cancer Cell. 2014 Jun 16;25(6):846-59. (PMID: 24898549)
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11103-8. (PMID: 23690610)
JCI Insight. 2020 Sep 1;5(18):. (PMID: 32870822)
Nature. 2016 Oct 20;538(7625):392-396. (PMID: 27732581)
Cell Rep. 2018 Mar 6;22(10):2530-2540. (PMID: 29514082)
Nature. 2012 Apr 18;486(7403):346-52. (PMID: 22522925)
Nat Rev Immunol. 2019 Jun;19(6):369-382. (PMID: 30718830)
Blood. 2002 Jan 1;99(1):111-20. (PMID: 11756160)
Proc Natl Acad Sci U S A. 2022 Feb 1;119(5):. (PMID: 35082152)
معلومات مُعتمدة: DP2 CA239065 United States CA NCI NIH HHS
فهرسة مساهمة: Keywords: breast cancer; macrophage self-renewal; spatial transcriptomics; tumor microenvironment; tumor-associated macrophages
تواريخ الأحداث: Date Created: 20231114 Latest Revision: 20231130
رمز التحديث: 20231130
مُعرف محوري في PubMed: PMC10634790
DOI: 10.1101/2023.10.24.563749
PMID: 37961223
قاعدة البيانات: MEDLINE
الوصف
DOI:10.1101/2023.10.24.563749