دورية أكاديمية

People with obesity exhibit losses in muscle proteostasis that are partly improved by exercise training.

التفاصيل البيبلوغرافية
العنوان: People with obesity exhibit losses in muscle proteostasis that are partly improved by exercise training.
المؤلفون: Srisawat K; Research Institute for Sport, & Exercise Sciences, Liverpool, UK., Stead CA; Research Institute for Sport, & Exercise Sciences, Liverpool, UK., Hesketh K; Research Institute for Sport, & Exercise Sciences, Liverpool, UK., Pogson M; Research Institute for Sport, & Exercise Sciences, Liverpool, UK., Strauss JA; Research Institute for Sport, & Exercise Sciences, Liverpool, UK., Cocks M; Research Institute for Sport, & Exercise Sciences, Liverpool, UK., Siekmann I; Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK., Phillips SM; Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada., Lisboa PJ; Department of Applied Mathematics, Liverpool John Moores University, Liverpool, UK., Shepherd S; Research Institute for Sport, & Exercise Sciences, Liverpool, UK., Burniston JG; Research Institute for Sport, & Exercise Sciences, Liverpool, UK.
المصدر: Proteomics [Proteomics] 2024 Jul; Vol. 24 (14), pp. e2300395. Date of Electronic Publication: 2023 Nov 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101092707 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9861 (Electronic) Linking ISSN: 16159853 NLM ISO Abbreviation: Proteomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH,
مواضيع طبية MeSH: Obesity*/metabolism , Proteostasis* , Muscle, Skeletal*/metabolism , Muscle Proteins*/metabolism , Exercise*/physiology, Humans ; Male ; Adult ; Proteomics/methods ; High-Intensity Interval Training/methods ; Pilot Projects ; Middle Aged ; Insulin Resistance
مستخلص: This pilot experiment examines if a loss in muscle proteostasis occurs in people with obesity and whether endurance exercise positively influences either the abundance profile or turnover rate of proteins in this population. Men with (n = 3) or without (n = 4) obesity were recruited and underwent a 14-d measurement protocol of daily deuterium oxide (D 2 O) consumption and serial biopsies of vastus lateralis muscle. Men with obesity then completed 10-weeks of high-intensity interval training (HIIT), encompassing 3 sessions per week of cycle ergometer exercise with 1 min intervals at 100% maximum aerobic power interspersed by 1 min recovery periods. The number of intervals per session progressed from 4 to 8, and during weeks 8-10 the 14-d measurement protocol was repeated. Proteomic analysis detected 352 differences (p < 0.05, false discovery rate < 5%) in protein abundance and 19 (p < 0.05) differences in protein turnover, including components of the ubiquitin-proteasome system. HIIT altered the abundance of 53 proteins and increased the turnover rate of 22 proteins (p < 0.05) and tended to benefit proteostasis by increasing muscle protein turnover rates. Obesity and insulin resistance are associated with compromised muscle proteostasis, which may be partially restored by endurance exercise.
(© 2023 The Authors. PROTEOMICS published by Wiley‐VCH GmbH.)
References: Kolb, H., Kempf, K., Röhling, M., & Martin, S. (2020). Insulin: Too much of a good thing is bad. BMC medicine, 18(1), 224–224. https://doi.org/10.1186/s12916‐020‐01688‐6.
Freitas, E. D. S., & Katsanos, C. S. (2022). (Dys)regulation of protein metabolism in skeletal muscle of humans with obesity. Frontiers in Physiology, 13, 843087. https://doi.org/10.3389/fphys.2022.843087.
Qi, Y., Zhang, X., Seyoum, B., Msallaty, Z., Mallisho, A., Caruso, M., Damacharla, D., Ma, D., Al‐Janabi, W., Tagett, R., Alharbi, M., Calme, G., Mestareehi, A., Draghici, S., Abou‐Samra, A., Kowluru, A., & Yi, Z. (2020). Kinome profiling reveals abnormal activity of kinases in skeletal muscle from adults with obesity and insulin resistance. Journal of Clinical Endocrinology and Metabolism, 644(3). https://doi.org/10.1210/clinem/dgz115.
Tran, L., Hanavan, P. D., Campbell, L. E., De Filippis, E., Lake, D. F., Coletta, D. K., Roust, L. R., Mandarino, L. J., Carroll, C. C., & Katsanos, C. S. (2016). Prolonged exposure of primary human muscle cells to plasma fatty acids associated with obese phenotype induces persistent suppression of muscle mitochondrial ATP synthase β subunit. PLoS ONE, 11(8), e0160057. https://doi.org/10.1371/journal.pone.0160057.
Tran, L., Kras, K. A., Hoffman, N., Ravichandran, J., Dickinson, J. M., D'lugos, A., Carroll, C. C., Patel, S. H., Mandarino, L. J., Roust, L., & Katsanos, C. S. (2018). Lower fasted‐state but greater increase in muscle protein synthesis in response to elevated plasma amino acids in obesity. Obesity (Silver Spring), 26(7), 1179–1187. https://doi.org/10.1002/oby.22213.
Guillet, C., Delcourt, I., Rance, M., Giraudet, C., Walrand, S., Bedu, M., Duche, P., & Boirie, Y. (2009). Changes in basal and insulin and amino acid response of whole body and skeletal muscle proteins in obese men. Journal of Clinical Endocrinology and Metabolism, 94(8), 3044–3050. https://doi.org/10.1210/jc.2008‐2216.
Beals, J. W., Sukiennik, R. A., Nallabelli, J., Emmons, R. S., Van Vliet, S., Young, J. R., Ulanov, A. V., Li, Z., Paluska, S. A., De Lisio, M., & Burd, N. A. (2016). Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein‐dense food is reduced in overweight and obese young adults. American Journal of Clinical Nutrition, 104(4), 1014–1022. https://doi.org/10.3945/ajcn.116.130385.
Srisawat, K., Shepherd, S., Lisboa, P., & Burniston, J. (2017). A Systematic review and meta‐analysis of proteomics literature on the response of human skeletal muscle to obesity/type 2 diabetes mellitus (T2DM) versus exercise training. Proteomes, 5(4), 30–30. https://doi.org/10.3390/proteomes5040030.
Camera, D. M., Burniston, J. G., Pogson, M. A., Smiles, W. J., & Hawley, J. A. (2017). Dynamic proteome profiling of individual proteins in human skeletal muscle after a high‐fat diet and resistance exercise. FASEB Journal, 31(12), 5478–5494. https://doi.org/10.1096/fj.201700531R.
Vanderboom, P., Zhang, X., Hart, C. R., Kunz, H E., Gries, K. J., Heppelmann, C. J., Liu, Y., Dasari, S., & Lanza, I. R. (2022). Impact of obesity on the molecular response to a single bout of exercise in a preliminary human cohort. Obesity (Silver Spring, Md.), 30(5), 1091–1104. https://doi.org/10.1002/oby.23419.
Srisawat, K., Hesketh, K., Cocks, M., Strauss, J., Edwards, B. J., Lisboa, P. J., Shepherd, S., & Burniston, J. G. (2019). Reliability of protein abundance and synthesis measurements in human skeletal muscle. Proteomics, 1900194, 1900194–1900194. https://doi.org/10.1002/pmic.201900194.
Cocks, M., Shaw, C. S., Shepherd, S. O., Fisher, J. P., Ranasinghe, A. M., Barker, T. A., Tipton, K. D., & Wagenmakers, A. J. M. (2013). Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. The Journal of Physiology, 591(3), 641–656. https://doi.org/10.1113/jphysiol.2012.239566.
Burniston, J. G. (2019). Investigating muscle protein turnover on a protein‐by‐protein basis using dynamic proteome profiling. In Burniston, J. G., & Chen, Y.‐W. (Eds.) Springer, pp. 171–190. https://doi.org/10.1007/978‐1‐4939‐9802‐9_9.
Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta‐Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. V. (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome‐wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131.
Robinson, N. E., & Robinson, A. B. (2001). Deamidation of human proteins. Proceedings of the National Academy of Sciences, 98(22), 12409–12413. https://doi.org/10.1073/pnas.221463198.
Hipkiss, A. R. (2011). Energy metabolism and ageing regulation: Metabolically driven deamidation of triosephosphate isomerase may contribute to proteostatic dysfunction. Ageing Research Reviews, 10(4), 498–502. https://doi.org/10.1016/j.arr.2011.05.003.
García‐Aguilar, A., Martínez‐Reyes, I., & Cuezva, J. M. (2019). Changes in the turnover of the cellular proteome during metabolic reprogramming: A role for mtROS in proteostasis. Journal of Proteome Research, 18(8), 3142–3155. https://doi.org/10.1021/acs.jproteome.9b00239.
Kelley, D. E., Mokan, M., & Mandarino, L. J. (1992). Intracellular defects in glucose metabolism in obese patients with NIDDM. Diabetes, 41(6), 698–706. https://doi.org/10.2337/diab.41.6.698.
Song, R., Peng, W., Zhang, Y., Lv, F., Wu, H.‐K., Guo, J., Cao, Y., Pi, Y., Zhang, X., Jin, L., Zhang, M., Jiang, P., Liu, F., Meng, S., Zhang, X., Jiang, P., Cao, C.‐M., & Xiao, R.‐P. (2013). Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature, 494(7437), 375–379. https://doi.org/10.1038/nature11834.
Hu, X., & Xiao, R.‐P. (2018). MG53 and disordered metabolism in striated muscle. Biochimica et Biophysica Acta (BBA) ‐ Molecular Basis of Disease, 1864(5 Pt B), 1984–1990. https://doi.org/10.1016/j.bbadis.2017.10.013.
Shiraishi, S., Zhou, C., Aoki, T., Sato, N., Chiba, T., Tanaka, K., Yoshida, S., Nabeshima, Y., Nabeshima, Y.‐I., & Tamura, T.‐A. (2007). TBP‐interacting Protein 120B (TIP120B)/Cullin‐associated and Neddylation‐dissociated 2 (CAND2) inhibits SCF‐dependent ubiquitination of myogenin and accelerates myogenic differentiation. Journal of Biological Chemistry, 282(12), 9017–9028. https://doi.org/10.1074/jbc.M611513200.
Wada, H., Kito, K., Caskey, L. S., Yeh, E. T. H., & Kamitani, T. (1998). Cleavage of the C‐terminus of NEDD8 by UCH‐L3. Biochemical and Biophysical Research Communications, 251(3), 688–692. https://doi.org/10.1006/bbrc.1998.9532.
Yang, S., Wang, B., Humphries, F., Hogan, A. E., O'shea, D., & Moynagh, P. N. (2014). The E3 ubiquitin ligase pellino3 protects against obesity‐induced inflammation and insulin resistance. Immunity, 41(6), 973–987. https://doi.org/10.1016/j.immuni.2014.11.013.
Andersen, P. L., Zhou, H., Pastushok, L., Moraes, T., Mckenna, S., Ziola, B., Ellison, M. J., Dixit, V. M., & Xiao, W. (2005). Distinct regulation of Ubc13 functions by the two ubiquitin‐conjugating enzyme variants Mms2 and Uev1A. Journal of Cell Biology, 170(5), 745–755. https://doi.org/10.1083/jcb.200502113.
Xu, N., Gulick, J., Osinska, H., Yu, Y., Mclendon, P. M., Shay‐Winkler, K., Robbins, J., & Yutzey, K. E. (2020). Ube2v1 positively regulates protein aggregation by modulating ubiquitin proteasome system performance partially through K63 ubiquitination. Circulation Research, 126(7), 907–922. https://doi.org/10.1161/circresaha.119.316444.
Zhao, Y., Long, M. J. C., Wang, Y., Zhang, S., & Aye, Y. (2018). Ube2V2 is a rosetta stone bridging redox and ubiquitin codes, coordinating DNA damage responses. ACS Central Science, 4(2), 246–259. https://doi.org/10.1021/acscentsci.7b00556.
Pluska, L., Jarosch, E., Zauber, H., Kniss, A., Waltho, A., Bagola, K., Von Delbrück, M., Löhr, F., Schulman, B. A., Selbach, M., Dötsch, V., & Sommer, T. (2021). The UBA domain of conjugating enzyme Ubc1/Ube2K facilitates assembly of K48/K63‐branched ubiquitin chains. The EMBO Journal, 40(6), e106094. https://doi.org/10.15252/embj.2020106094.
Ohtake, F., Tsuchiya, H., Saeki, Y., & Tanaka, K. (2018). K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proceedings of the National Academy of Sciences, 115(7), E1401–E1408. https://doi.org/10.1073/pnas.1716673115.
Hwang, H., Bowen, B. P., Lefort, N., Flynn, C. R., De Filippis, E. A., Roberts, C., Smoke, C. C., Meyer, C., Højlund, K., Yi, Z., & Mandarino, L. J. (2010). Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes, 59(1), 33–42.
Burniston, J G. (2009). Adaptation of the rat cardiac proteome in response to intensity‐controlled endurance exercise. Proteomics, 9(1), 106–115. https://doi.org/10.1002/pmic.200800268.
Li, J., Powell, S. R., & Wang, X. (2011). Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB Journal, 25(3), 883–893. https://doi.org/10.1096/fj.10‐160895.
Merforth, S., Kuehn, L., Osmers, A., & Dahlmann, B. (2003). Alteration of 20S proteasome‐subtypes and proteasome activator PA28 in skeletal muscle of rat after induction of diabetes mellitus. International Journal of Biochemistry, & Cell Biology, 35(5), 740–748. https://doi.org/10.1016/s1357‐2725(02)00381‐3.
Haslbeck, M., Weinkauf, S., & Buchner, J. (2019). Small heat shock proteins: Simplicity meets complexity. Journal of Biological Chemistry, 294(6), 2121–2132. https://doi.org/10.1074/jbc.REV118.002809.
Gonçalves, C. C., Sharon, I., Schmeing, T. M, Ramos, C. H. I., & Young, J. C. (2021). The chaperone HSPB1 prepares protein aggregates for resolubilization by HSP70. Scientific Reports, 11(1), 17139. https://doi.org/10.1038/s41598‐021‐96518‐x.
Gupta, S., Deepti, A., Deegan, S., Lisbona, F., Hetz, C., & Samali, A. (2010). HSP72 protects cells from ER Stress‐induced apoptosis via enhancement of IRE1α‐XBP1 Signaling through a Physical Interaction. PLOS Biology, 8(7), e1000410. https://doi.org/10.1371/journal.pbio.1000410.
Chung, J., Nguyen, A.‐K., Henstridge, D. C., Holmes, A. G., Chan, M. H. S., Mesa, J. L., Lancaster, G. I., Southgate, R. J., Bruce, C. R., Duffy, S. J., Horvath, I., Mestril, R., Watt, M. J., Hooper, P. L., Kingwell, B. A., Vigh, L., Hevener, A., & Febbraio, M. A. (2008). HSP72 protects against obesity‐induced insulin resistance. Proceedings of the National Academy of Sciences, 105(5), 1739–1744. https://doi.org/10.1073/pnas.0705799105.
Fernández‐Fernández, M. R., & Valpuesta, J. M. (2018). Hsp70 chaperone: A master player in protein homeostasis. F1000Res, 7, F1000 Faculty Rev–1497. https://doi.org/10.12688/f1000research.15528.1.
Lee, J.‐H., Gao, J., Kosinski, P. A., Elliman, S. J., Hughes, T. E., Gromada, J., & Kemp, D. M. (2013). Heat shock protein 90 (HSP90) inhibitors activate the heat shock factor 1 (HSF1) stress response pathway and improve glucose regulation in diabetic mice. Biochemical and Biophysical Research Communications, 430(3), 1109–1113. https://doi.org/10.1016/j.bbrc.2012.12.029.
Jing, E., Sundararajan, P., Majumdar, I. D., Hazarika, S., Fowler, S., Szeto, A., Gesta, S., Mendez, A. J., Vishnudas, V. K., Sarangarajan, R., & Narain, N. R. (2018). Hsp90β knockdown in DIO mice reverses insulin resistance and improves glucose tolerance. Nutrition, & Metabolism, 15, 11. https://doi.org/10.1186/s12986‐018‐0242‐6.
Venojärvi, M., Korkmaz, A., Aunola, S., Hällsten, K., Virtanen, K., Marniemi, J., Halonen, J.‐P., Hänninen, O., Nuutila, P., & Atalay, M. (2014). Decreased thioredoxin‐1 and increased HSP90 expression in skeletal muscle in subjects with type 2 diabetes or impaired glucose tolerance. BioMed Research International, 2014, 1–6. https://doi.org/10.1155/2014/386351.
Backe, S. J., Sager, R. A., Woodford, M. R., Makedon, A. M., & Mollapour, M. (2020). Post‐translational modifications of Hsp90 and translating the chaperone code. Journal of Biological Chemistry, 295(32), 11099–11117. https://doi.org/10.1074/jbc.REV120.011833.
Beck, R., Dejeans, N., Glorieux, C., Creton, M., Delaive, E., Dieu, M., Raes, M., Levêque, P., Gallez, B., Depuydt, M., Collet, J.‐F., Calderon, P. B., & Verrax, J. (2012). Hsp90 is cleaved by reactive oxygen species at a highly conserved N‐terminal amino acid motif. PLoS ONE, 7(7), e40795. https://doi.org/10.1371/journal.pone.0040795.
Gesualdi, N. M, Chirico, G., Pirozzi, G., Costantino, E., Landriscina, M., & Esposito, F. (2007). Tumor necrosis factor‐associated protein 1 (TRAP‐1) protects cells from oxidative stress and apoptosis. Stress (Amsterdam, Netherlands), 10(4), 342–350. https://doi.org/10.1080/10253890701314863.
Richarme, G., Mihoub, M., Dairou, J., Bui, L. C., Leger, T., & Lamouri, A. (2015). Parkinsonism‐associated protein DJ‐1/park7 is a major protein deglycase that repairs methylglyoxal‐ and glyoxal‐glycated cysteine, arginine, and lysine residues. Journal of Biological Chemistry, 290(3), 1885–1897. https://doi.org/10.1074/jbc.M114.597815.
Mey, J. T., Blackburn, B. K., Miranda, E. R., Chaves, A. B., Briller, J., Bonini, M. G., & Haus, J. M. (2018). Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 314(2), R181–R190. https://doi.org/10.1152/ajpregu.00159.2017.
Xia, Q., Casas‐Martinez, J. C., Zarzuela, E., Muñoz, J., Miranda‐Vizuete, A., Goljanek‐Whysall, K., & Mcdonagh, B. (2023). Peroxiredoxin 2 is required for the redox mediated adaptation to exercise. Redox Biology, 60, 102631. https://doi.org/10.1016/j.redox.2023.102631.
Brinkmann, C., Chung, N., Schmidt, U., Kreutz, T., Lenzen, E., Schiffer, T., Geisler, S., Graf, C., Montiel‐Garcia, G., Renner, R., Bloch, W., & Brixius, K. (2012). Training alters the skeletal muscle antioxidative capacity in non‐insulin‐dependent type 2 diabetic men. Scandinavian Journal of Medicine, & Science in Sports, 22(4), 462–470. https://doi.org/10.1111/j.1600‐0838.2010.01273.x.
Al‐Khalili, L., De Castro Barbosa, T., Östling, J., Massart, J., Katayama, M., Nyström, A.‐C., Oscarsson, J., & Zierath, J. R. (2013). Profiling of human myotubes reveals an intrinsic proteomic signature associated with type 2 diabetes. Biochemical Pharmacology, 2, 25–38. https://doi.org/10.1016/j.trprot.2013.12.002.
Tran, L., Langlais, P R., Hoffman, N., Roust, L., & Katsanos, C S. (2019). Mitochondrial ATP synthase β‐subunit production rate and ATP synthase specific activity are reduced in skeletal muscle of humans with obesity. Experimental Physiology, 104(1), 126–135. https://doi.org/10.1113/ep087278.
Perez‐Riverol, Y., Csordas, A., Bai, J., Bernal‐Llinares, M., Hewapathirana, S., Kundu, D. J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M., Pérez, E., Uszkoreit, J., Pfeuffer, J., Sachsenberg, T., Yilmaz, S., Tiwary, S., Cox, J., Audain, E., Walzer, M., … Vizcaíno, J. A. (2019). The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Research, 47(D1), D442–D450. https://doi.org/10.1093/nar/gky1106.
معلومات مُعتمدة: Royal Thai Government
فهرسة مساهمة: Keywords: biosynthetic labelling; deuterium oxide; fractional synthesis rate; heat shock proteins; heavy water; muscle protein synthesis; protein turnover; proteomics; skeletal muscle; ubiquitin proteasome system
المشرفين على المادة: 0 (Muscle Proteins)
تواريخ الأحداث: Date Created: 20231114 Date Completed: 20240712 Latest Revision: 20240712
رمز التحديث: 20240712
DOI: 10.1002/pmic.202300395
PMID: 37963832
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-9861
DOI:10.1002/pmic.202300395