دورية أكاديمية

The Diversity of Bacteriophages in Hot Springs.

التفاصيل البيبلوغرافية
العنوان: The Diversity of Bacteriophages in Hot Springs.
المؤلفون: Marks TJ; Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA. markst@campbell.edu., Rowland IR; Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies Creek, NC, USA.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2738, pp. 73-88.
نوع المنشور: Review; Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Bacteriophages*/genetics , Hot Springs* , Siphoviridae*, Humans ; Myoviridae ; Extreme Environments
مستخلص: Bacteriophages are ubiquitous in all environments that support microbial life. This includes hot springs, which can range in temperatures between 40 and 98 °C and pH levels between 1 and 9. Bacteriophages that survive in the higher temperatures of hot springs are known as thermophages. Thermophages have developed distinct adaptations allowing for thermostability in these extreme environments, including increased G + C DNA percentages, reliance upon the pentose phosphate metabolic pathway to avoid oxidative stress, and a codon preference for those with a GNA sequence leading to increased hydrophobic interactions and disulfide bonds. In this review, we discuss the diversity of characterized thermophages in hot spring environments that span five viral families: Myoviridae, Siphoviridae, Tectiviridae, Sphaerolipoviridae, and Inoviridae. Potential industrial and medicinal applications of thermophages will also be addressed.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Breitbart M, Wegley L, Leeds S, Schoenfeld T, Rohwer F (2004) Phage community dynamics in hot springs. Appl Environ Microbiol 70(3):1633–1640. https://doi.org/10.1128/AEM.70.3.1633-1640.2004. (PMID: 10.1128/AEM.70.3.1633-1640.200415006788368299)
Zablocki O, van Zyl LJ, Kirby B, Trindade M (2017) Diversity of dsDNA viruses in a South African hot spring assessed by metagenomics and microscopy. Viruses 9(11):348. https://doi.org/10.3390/v9110348. (PMID: 10.3390/v9110348291565525707555)
Munson-McGee J, Rooney C, Young MJ (2020) An uncultivated virus infecting a nanoarchaeal parasite in the hot springs of Yellowstone National Park. J Virol 94:3. https://doi.org/10.1128/JVI.01213-19. (PMID: 10.1128/JVI.01213-19)
Poddar A, Das SK (2018) Microbiological studies of hot springs in India: a review. Arch Microbiol 200(1):1–18. https://doi.org/10.1007/s00203-017-1429-3. (PMID: 10.1007/s00203-017-1429-328887679)
Das S, Paul S, Bag SK, Dutta C (2006) Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 7(1):186. https://doi.org/10.1186/1471-2164-7-186. (PMID: 10.1186/1471-2164-7-186168699561574309)
Salwan R, Sharma V (2022) Genomics of prokaryotic extremophiles to unfold the mystery of survival in extreme environments. Microbiol Res 264:127156. https://doi.org/10.1016/j.micres.2022.127156. (PMID: 10.1016/j.micres.2022.12715635985221)
Barabote RD, Xie G, Leu DH, Normand P, Necsulea A, Daubin V, Médigue C, Adney WS, Xu XC, Lapidus A, Parales RE, Detter C, Pujic P, Bruce D, Lavire C, Challacombe JF, Brettin TS, Berry AM (2009) Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations. Genome Res 19(6):1033–1043. https://doi.org/10.1101/gr.084848.108. (PMID: 10.1101/gr.084848.108192700832694482)
Brininger C, Spradlin S, Cobani L, Evilia C (2018) The more adaptive to change, the more likely you are to survive: protein adaptation in extremophiles. Semin Cell Dev Biol 84:158–169. https://doi.org/10.1016/j.semcdb.2017.12.016. (PMID: 10.1016/j.semcdb.2017.12.01629288800)
Henne A, Brüggemann H, Raasch C, Wiezer A, Hartsch T, Liesegang H, Johann A, Lienard T, Gohl O, Martinez-Arias R, Jacobi C, Starkuviene V, Schlenczeck S, Dencker S, Huber R, Klenk H-P, Kramer W, Merkl R, Gottschalk G, Fritz H-J (2004) The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22(5):547–553. https://doi.org/10.1038/nbt956. (PMID: 10.1038/nbt95615064768)
Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature (London) 399(6736):541–548. https://doi.org/10.1038/21119. (PMID: 10.1038/2111910376593)
Kimura M, Jia Z-J, Nakayama N, Asakawa S (2008) Ecology of viruses in soils: past, present and future perspectives. Soil Sci Plant Nutr (Tokyo) 54(1):1–32. https://doi.org/10.1111/j.1747-0765.2007.00197.x. (PMID: 10.1111/j.1747-0765.2007.00197.x)
Łubkowska B, Jeżewska-frąckowiak J, Sobolewski I, Skowron PM (2021) Bacteriophages of thermophilic ‘bacillus group’ bacteria – a review. Microorganisms (Basel) 9(7):1522. https://doi.org/10.3390/microorganisms9071522. (PMID: 10.3390/microorganisms9071522)
Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8(4):444–450. https://doi.org/10.1016/j.mib.2005.06.005. (PMID: 10.1016/j.mib.2005.06.00515979387)
Thurber RV (2009) Current insights into phage biodiversity and biogeography. Curr Opin Microbiol 12(5):582–587. https://doi.org/10.1016/j.mib.2009.08.008. (PMID: 10.1016/j.mib.2009.08.00819811946)
Hurwitz BL, Sullivan MB (2013) The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One 8(2):e57355. https://doi.org/10.1371/journal.pone.0057355. (PMID: 10.1371/journal.pone.0057355234689743585363)
Borriss M, Helmke E, Hanschke R, Schweder T (2003) Isolation and characterization of marine psychrophilic phage-host systems from Arctic Sea ice. Extremophiles 7(5):377–384. https://doi.org/10.1007/s00792-003-0334-7. (PMID: 10.1007/s00792-003-0334-712820036)
Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4(1):201–219. https://doi.org/10.1146/annurev-virology-101416-041639. (PMID: 10.1146/annurev-virology-101416-04163928961409)
Peng X, Garrett RA, She Q (2012) Archaeal viruses novel, diverse and enigmatic. Sci China Life Sci 55(5):422–433. https://doi.org/10.1007/s11427-012-4325-8. (PMID: 10.1007/s11427-012-4325-822645086)
Dellas N, Snyder JC, Bolduc B, Young MJ (2014) Archaeal viruses: diversity, replication, and structure. Annu Rev Virol 1(1):399–426. https://doi.org/10.1146/annurev-virology-031413-085357. (PMID: 10.1146/annurev-virology-031413-08535726958728)
Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 67(1):565–585. https://doi.org/10.1146/annurev-micro-092412-155633. (PMID: 10.1146/annurev-micro-092412-15563324024638)
Prangishvili D, Bamford DH, Forterre P, Iranzo J, Koonin EV, Krupovic M (2017) The enigmatic archaeal virosphere. Nat Rev Microbiol 15(12):724–739. https://doi.org/10.1038/nrmicro.2017.125. (PMID: 10.1038/nrmicro.2017.12529123227)
Zablocki O, van Zyl L, Trindade M (2018) Biogeography and taxonomic overview of terrestrial hot spring thermophilic phages. Extremophiles 22. https://doi.org/10.1007/s00792-018-1052-5.
Tomova I, Stoilova-Disheva M, Lyutskanova D, Pascual J, Petrov P, Kambourova M (2010) Phylogenetic analysis of the bacterial community in a geothermal spring, Rupi Basin, Bulgaria. World J Microbiol Biotechnol 26(11):2019–2028. https://doi.org/10.1007/s11274-010-0386-7. (PMID: 10.1007/s11274-010-0386-7)
Sahoo RK, Subudhi E, Kumar M (2015) Investigation of bacterial diversity of hot springs of Odisha, India. Genomics Data 6:188–190. https://doi.org/10.1016/j.gdata.2015.09.018. (PMID: 10.1016/j.gdata.2015.09.018266973694664759)
Kumar M, Khanna S (2014) Shift in microbial population in response to crystalline cellulose degradation during enrichment with a semi-desert soil. Int Biodeterior Biodegradation 88:134–141. https://doi.org/10.1016/j.ibiod.2013.10.025. (PMID: 10.1016/j.ibiod.2013.10.025)
Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings R, Fouke BW, Reysenbach A-L, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5(3):e9773. https://doi.org/10.1371/journal.pone.0009773. (PMID: 10.1371/journal.pone.0009773203333042841643)
Schoenfeld T, Patterson M, Richardson PM, Wommack KE, Young M, Mead D (2008) Assembly of viral metagenomes from Yellowstone Hot Springs. Appl Environ Microbiol 74(13):4164–4174. https://doi.org/10.1128/AEM.02598-07. (PMID: 10.1128/AEM.02598-07184411152446518)
Rice G, Stedman K, Snyder J, Wiedenheft B, Willits D, Brumfield S, McDermott T, Young MJ (2001) Viruses from extreme thermal environments. PNAS 98(23):13341–13345. https://doi.org/10.1073/pnas.231170198. (PMID: 10.1073/pnas.2311701981160675760872)
Rachel R, Bettstetter M, Hedlund BP, Haring M, Kessler A, Stetter KO, Prangishvili D (2002) Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Brief Rep Arch Virol 147(12):2419. https://doi.org/10.1007/s00705-002-0895-2. (PMID: 10.1007/s00705-002-0895-2)
Gudbergsdóttir SR, Menzel P, Krogh A, Young M, Peng X (2016) Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environ Microbiol 18(3):863–874. https://doi.org/10.1111/1462-2920.13079. (PMID: 10.1111/1462-2920.1307926439881)
Rohwer F (2003) Global phage diversity, vol 113. Elsevier Inc, United States. https://doi.org/10.1016/S0092-8674(03)00276-9. (PMID: 10.1016/S0092-8674(03)00276-9)
Charles TC, Liles MR, Sessitsch A (2017) Functional metagenomics of a replicase from a novel hyperthermophilic aquificales virus. In: Functional metagenomics: tools and applications. Springer, Cham, pp 217–242. https://doi.org/10.1007/978-3-319-61510-3_13. (PMID: 10.1007/978-3-319-61510-3_13)
Cava F, Hidalgo A, Berenguer J (2009) Thermus thermophilus as biological model. Extremophiles 13(2):213–231. https://doi.org/10.1007/s00792-009-0226-6. (PMID: 10.1007/s00792-009-0226-619156357)
Yu MX, Slater MR, Ackermann HW (2006) Isolation and characterization of Thermus bacteriophages. Arch Virol 151(4):663–679. https://doi.org/10.1007/s00705-005-0667-x. (PMID: 10.1007/s00705-005-0667-x16308675)
Hjorleifsdottir S, Aevarsson A, Hreggvidsson GO, Fridjonsson OH, Kristjansson JK (2014) Isolation, growth and genome of the Rhodothermus RM378 thermophilic bacteriophage. Extremophiles 18(2):261–270. https://doi.org/10.1007/s00792-013-0613-x. (PMID: 10.1007/s00792-013-0613-x24318108)
Naryshkina T, Liu J, Florens L, Swanson SK, Pavlov AR, Pavlova NV, Inman R, Minakhin L, Kozyavkin SA, Washburn M, Mushegian A, Severinov K (2006) Thermus thermophilus bacteriophage ϕYS40 genome and proteomic characterization of virions. J Mol Biol 364(4):667–677. https://doi.org/10.1016/j.jmb.2006.08.087. (PMID: 10.1016/j.jmb.2006.08.087170270291773054)
Sakaki Y, Oshima T (1975) Isolation and characterization of a bacteriophage infectious to an extreme thermophile, Thermus thermophilus HB8. J Virol 15(6):1449–1453. https://doi.org/10.1128/JVI.15.6.1449-1453.1975. (PMID: 10.1128/JVI.15.6.1449-1453.19751142476354612)
Tamakoshi M, Murakami A, Sugisawa M, Tsuneizumi K, Takeda S, Saheki T, Izumi T, Akiba T, Mitsuoka K, Toh H, Yamashita A, Arisaka F, Hattori M, Oshima T, Yamagishi A (2011) Genomic and proteomic characterization of the large Myoviridae bacteriophage ϕTMA of the extreme thermophile Thermus thermophilus. Bacteriophage 1(3):152–164. https://doi.org/10.4161/bact.1.3.16712. (PMID: 10.4161/bact.1.3.16712221643493225780)
Liu B, Wu S, Xie L (2010) Complete genome sequence and proteomic analysis of a thermophilic bacteriophage BV1. Acta Oceanol Sin 29(3):84–89. https://doi.org/10.1007/s13131-010-0039-6. (PMID: 10.1007/s13131-010-0039-6)
Liu B, Zhou F, Wu S, Xu Y, Zhang X (2009) Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1. Res Microbiol 160(2):166–171. https://doi.org/10.1016/j.resmic.2008.12.005. (PMID: 10.1016/j.resmic.2008.12.00519174188)
Lin L, Hong W, Ji X, Han J, Huang L, Wei Y (2010) Isolation and characterization of an extremely long tail Thermus bacteriophage from Tengchong hot springs in China. J Basic Microbiol 50(5):452–456. https://doi.org/10.1002/jobm.201000116. (PMID: 10.1002/jobm.20100011620806260)
Donelli G, Dore E, Frontali C, Grandolfo ME (1975) Structure and physico-chemical properties of bacteriophage G. J Mol Biol 94(4):555–565. https://doi.org/10.1016/0022-2836(75)90321-6. (PMID: 10.1016/0022-2836(75)90321-6810596)
Minakhin L, Goel M, Berdygulova Z, Ramanculov E, Florens L, Glazko G, Karamychev VN, Slesarev AI, Kozyavkin SA, Khromov I, Ackermann H-W, Washburn M, Mushegian A, Severinov K (2008) Genome comparison and proteomic characterization of Thermus thermophilus bacteriophages P23-45 and P74-26: siphoviruses with triplex-forming sequences and the longest known tails. J Mol Biol 378(2):468–480. https://doi.org/10.1016/j.jmb.2008.02.018. (PMID: 10.1016/j.jmb.2008.02.018183558362440725)
Pawlowski A, Rissanen I, Bamford JKH, Krupovic M, Jalasvuori M (2014) Gammasphaerolipovirus, a newly proposed bacteriophage genus, unifies viruses of halophilic archaea and thermophilic bacteria within the novel family Sphaerolipoviridae. Arch Virol 159(6):1541–1554. https://doi.org/10.1007/s00705-013-1970-6. (PMID: 10.1007/s00705-013-1970-624395078)
Jalasvuori M, Pawlowski A, Bamford JKH (2010) A unique group of virus-related, genome-integrating elements found solely in the bacterial family Thermaceae and the archaeal family Halobacteriaceae. J Bacteriol 192(12):3231–3234. https://doi.org/10.1128/JB.00124-10. (PMID: 10.1128/JB.00124-10204005462901701)
Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B (2002) Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. Appl Environ Microbiol 68(2):745–755. https://doi.org/10.1128/AEM.68.2.745-755.2002. (PMID: 10.1128/AEM.68.2.745-755.200211823215126729)
Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. Arch Virol 146(5):843–857. https://doi.org/10.1007/s007050170120. (PMID: 10.1007/s00705017012011448025)
Pederson DM, Welsh LC, Marvin DA, Sampson M, Perham RN, Yu M, Slater MR (2001) The protein capsid of filamentous bacteriophage PH75 from Thermus thermophilus. J Mol Biol 309(2):401–421. https://doi.org/10.1006/jmbi.2001.4685. (PMID: 10.1006/jmbi.2001.468511371161)
Overman SA, Bondre P, Maiti NC, Thomas GJ (2005) Structural characterization of the filamentous bacteriophage PH75 from Thermus thermophilus by Raman and UV-resonance Raman spectroscopy. Biochemistry (Easton) 44(8):3091–3100. https://doi.org/10.1021/bi048163d. (PMID: 10.1021/bi048163d)
Nagayoshi Y, Kumagae K, Mori K, Tashiro K, Nakamura A, Fujino Y, Hiromasa Y, Iwamoto T, Kuhara S, Ohshima T, Doi K (2016) Physiological properties and genome structure of the hyperthermophilic filamentous phage φOH3 which infects Thermus thermophilus HB8. Front Microbiol 7:50. https://doi.org/10.3389/fmicb.2016.00050. (PMID: 10.3389/fmicb.2016.00050269417114763002)
Tsuboi M, Benevides JM, Bondre P, Thomas GJ (2005) Structural details of the thermophilic filamentous bacteriophage PH75 determined by polarized Raman microspectroscopy. Biochemistry (Easton) 44(12):4861–4869. https://doi.org/10.1021/bi0479306. (PMID: 10.1021/bi0479306)
Suzuki H, Wada K, Furukawa M, Doi K, Ohshima T (2013) A ternary conjugation system for the construction of DNA libraries for Geobacillus kaustophilus HTA426. Biosci Biotechnol Biochem 77(11):2316–2318. https://doi.org/10.1271/bbb.130492. (PMID: 10.1271/bbb.13049224200788)
Wiegel J, Ljungdahl LG, Demain AL (1985) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3(1):39–108. https://doi.org/10.3109/07388558509150780. (PMID: 10.3109/07388558509150780)
Szeker K, Zhou X, Schwab T, Casanueva A, Cowan D, Mikhailopulo IA, Neubauer P (2012) Comparative investigations on thermostable pyrimidine nucleoside phosphorylases from Geobacillus thermoglucosidasius and Thermus thermophilus. J Mol Catal B Enzym 84:27–34. https://doi.org/10.1016/j.molcatb.2012.02.006. (PMID: 10.1016/j.molcatb.2012.02.006)
Hussein A, Lisowska B, Leak D (2015) The genus Geobacillus and their biotechnological potential. Adv Appl Microbiol 92:1–48. https://doi.org/10.1016/bs.aambs.2015.03.001. (PMID: 10.1016/bs.aambs.2015.03.00126003932)
Turner P, Mamo G, Karlsson E (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:9. https://doi.org/10.1186/1475-2859-6-9. (PMID: 10.1186/1475-2859-6-9)
Van Zyl LJ, Taylor MP, Eley K, Tuffin M, Cowan DA (2014) Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius. Appl Microbiol Biotechnol 98(3):1247–1259. https://doi.org/10.1007/s00253-013-5380-1. (PMID: 10.1007/s00253-013-5380-124276622)
Blanchard K, Robic S, Matsumura I (2014) Transformable facultative thermophile Geobacillus stearothermophilus NUB3621 as a host strain for metabolic engineering. Appl Microbiol Biotechnol 98(15):6715–6723. https://doi.org/10.1007/s00253-014-5746-z. (PMID: 10.1007/s00253-014-5746-z247883264251812)
Marks T (2020) Development of a genetic toolbox for Geobacillus kaustophilus using novel bacteriophages GBK1 and GBK2. ProQuest Dissertations Publishing.
van Zyl LJ, Sunda F, Taylor MP, Cowan DA, Trindade MI (2015) Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3. Arch Virol 160(9):2269–2282. https://doi.org/10.1007/s00705-015-2497-9. (PMID: 10.1007/s00705-015-2497-926123922)
Court D, Sawitzke J, Thomason L (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388. https://doi.org/10.1146/annurev.genet.36.061102.093104. (PMID: 10.1146/annurev.genet.36.061102.09310412429697)
Muyrers J, Zhang Y, Testa G, Stewart A (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27(6):1555–1557. https://doi.org/10.1093/nar/27.6.1555. (PMID: 10.1093/nar/27.6.155510037821148353)
Murphy K (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180(8):2063–2071. (PMID: 10.1128/JB.180.8.2063-2071.19989555887107131)
Lee E, Yu D, Martinez de Velasco J, Tessarollo L, Swing D, Court D, Jenkins N, Copeland N (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73(1):56–65. https://doi.org/10.1006/geno.2000.6451. (PMID: 10.1006/geno.2000.645111352566)
Stewart AF, Zhang Y, Buchholz F, Muyrers JPP (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20(2):123–128. https://doi.org/10.1038/2417. (PMID: 10.1038/24179771703)
Hatfull GF, van Kessel JC (2007) Recombineering in mycobacterium tuberculosis. Nat Methods 4(2):147–152. https://doi.org/10.1038/nmeth996. (PMID: 10.1038/nmeth99617179933)
Sun Z, Deng A, Hu T, Wu J, Sun Q, Bai H, Zhang G, Wen T (2015) A high-efficiency recombineering system with PCR-based ssDNA in Bacillus subtilis mediated by the native phage recombinase GP35. Appl Microbiol Biotechnol 99(12):5151–5162. https://doi.org/10.1007/s00253-015-6485-5. (PMID: 10.1007/s00253-015-6485-525750031)
Sunderland KS, Yang M, Mao C (2017) Phage-enabled nanomedicine: from probes to therapeutics in precision medicine. Angewandte Chemie (International ed) 56(8):1964–1992. https://doi.org/10.1002/anie.201606181. (PMID: 10.1002/anie.201606181)
Shapiro JW, Putonti C (2018) Gene co-occurrence networks reflect bacteriophage ecology and evolution. mBio 9(2). https://doi.org/10.1128/mBio.01870-17.
Maat DS, Biggs T, Evans C, van Bleijswijk JDL, van der Wel NN, Dutilh BE, Brussaard CPD (2017) Characterization and temperature dependence of Arctic Micromonas polaris viruses. Viruses 9(6):134. https://doi.org/10.3390/v9060134. (PMID: 10.3390/v9060134285744205490811)
Gil JF, Mesa V, Estrada-Ortiz N, Lopez-Obando M, Gómez A, Plácido J (2021) Viruses in extreme environments, current overview, and biotechnological potential. Viruses 13(1):81. https://doi.org/10.3390/v13010081. (PMID: 10.3390/v13010081334301167826561)
Hughes KA, Sutherland IW, Clark J, Jones MV (1998) Bacteriophage and associated polysaccharide depolymerases – novel tools for study of bacterial biofilms. J Appl Microbiol 85(3):583–590. https://doi.org/10.1046/j.1365-2672.1998.853541.x. (PMID: 10.1046/j.1365-2672.1998.853541.x9750288)
Parasion S, Kwiatek M, Gryko R, Mizak L, Malm A (2014) Bacteriophages as an alternative strategy for fighting biofilm development. Pol J Microbiol 63(2):137–145. https://doi.org/10.33073/pjm-2014-019. (PMID: 10.33073/pjm-2014-01925115107)
فهرسة مساهمة: Keywords: Bacteriophage diversity; Bacteriophages; Hot springs; Thermophage; Thermophile
تواريخ الأحداث: Date Created: 20231115 Date Completed: 20231116 Latest Revision: 20231125
رمز التحديث: 20231125
DOI: 10.1007/978-1-0716-3549-0_4
PMID: 37966592
قاعدة البيانات: MEDLINE
الوصف
تدمد:1940-6029
DOI:10.1007/978-1-0716-3549-0_4