دورية أكاديمية

Springing forward: Migrating songbirds catch up with the start of spring in North America.

التفاصيل البيبلوغرافية
العنوان: Springing forward: Migrating songbirds catch up with the start of spring in North America.
المؤلفون: Nemes CE; University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, Maryland, USA., Marra PP; The Earth Commons Institute; Department of Biology, McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA., Zenzal TJ Jr; U.S. Geological Survey, Wetland and Aquatic Research Center, Lafayette, Louisiana, USA., Collins SA; Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana, USA., Dossman BC; Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA., Gerson AR; Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA., Gómez C; SELVA: Investigación para la Conservación en el Neotrópico, Bogotá, Colombia., González AM; SELVA: Investigación para la Conservación en el Neotrópico, Bogotá, Colombia.; Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada., Gutierrez Ramirez M; Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA.; Organismic and Evolutionary Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA., Hamer SA; Schubot Center for Avian Health, Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA., Marty J; Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana, USA., Vasseur PL; Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana, USA., Cohen EB; University of Maryland Center for Environmental Science, Appalachian Laboratory, Frostburg, Maryland, USA.
المصدر: The Journal of animal ecology [J Anim Ecol] 2024 Mar; Vol. 93 (3), pp. 294-306. Date of Electronic Publication: 2023 Nov 16.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 0376574 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2656 (Electronic) Linking ISSN: 00218790 NLM ISO Abbreviation: J Anim Ecol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Blackwell
Original Publication: Oxford, British Ecological Society.
مواضيع طبية MeSH: Songbirds*, Humans ; Animals ; Animal Migration ; Plant Breeding ; North America ; Seasons
مستخلص: In temperate regions, the annual pattern of spring onset can be envisioned as a 'green wave' of emerging vegetation that moves across continents from low to high latitudes, signifying increasing food availability for consumers. Many herbivorous migrants 'surf' such resource waves, timing their movements to exploit peak vegetation resources in early spring. Although less well studied at the individual level, secondary consumers such as insectivorous songbirds can track vegetation phenology during migration as well. We hypothesized that four species of ground-foraging songbirds in eastern North America-two warblers and two thrushes-time their spring migrations to coincide with later phases of vegetation phenology, corresponding to increased arthropod prey, and predicted they would match their migration rate to the green wave but trail behind it rather than surfing its leading edge. We further hypothesized that the rate at which spring onset progresses across the continent influences bird migration rates, such that individuals adjust migration timing within North America to phenological conditions they experience en route. To test our hypotheses, we used a continent-wide automated radio telemetry network to track individual songbirds on spring migration between the U.S. Gulf Coast region and northern locations closer to their breeding grounds. We measured vegetation phenology using two metrics of spring onset, the spring index first leaf date and the normalized difference vegetation index (NDVI), then calculated the rate and timing of spring onset relative to bird detections. All individuals arrived in the southeastern United States well after local spring onset. Counter to our expectations, we found that songbirds exhibited a 'catching up' pattern: Individuals migrated faster than the green wave of spring onset, effectively closing in on the start of spring as they approached breeding areas. While surfing of resource waves is a well-documented migration strategy for herbivorous waterfowl and ungulates, individual songbirds in our study migrated faster than the green wave and increasingly caught up to its leading edge en route. Consequently, songbirds experience a range of vegetation phenophases while migrating through North America, suggesting flexibility in their capacity to exploit variable resources in spring.
(© 2023 The Authors. Journal of Animal Ecology © 2023 British Ecological Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.)
References: Abrahms, B., Aikens, E. O., Armstrong, J. B., Deacy, W. W., Kauffman, M. J., & Merkle, J. A. (2021). Emerging perspectives on resource tracking and animal movement ecology. Trends in Ecology & Evolution, 36(4), 308-320. https://doi.org/10.1016/j.tree.2020.10.018.
Ahola, M., Laaksonen, T., Sippola, K., Eeva, T., Rainio, K., & Lehikoinen, E. (2004). Variation in climate warming along the migration route uncouples arrival and breeding dates. Global Change Biology, 10(9), 1610-1617. https://doi.org/10.1111/j.1365-2486.2004.00823.x.
Aikens, E. O., Kauffman, M. J., Merkle, J. A., Dwinnell, S. P. H., Fralick, G. L., & Monteith, K. L. (2017). The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecology Letters, 20(6), 741-750. https://doi.org/10.1111/ele.12772.
Aikens, E. O., Mysterud, A., Merkle, J. A., Cagnacci, F., Rivrud, I. M., Hebblewhite, M., Hurley, M. A., Peters, W., Bergen, S., De Groeve, J., Dwinnell, S. P. H., Gehr, B., Heurich, M., Hewison, A. J. M., Jarnemo, A., Kjellander, P., Kröschel, M., Licoppe, A., Linnell, J. D. C., … Kauffman, M. J. (2020). Wave-like patterns of plant phenology determine ungulate movement tactics. Current Biology, 30(17), 3444-3449.e4. https://doi.org/10.1016/j.cub.2020.06.032.
Alerstam, T., Hedenström, A., & Åkesson, S. (2003). Long-distance migration: Evolution and determinants. Oikos, 103(2), 247-260.
Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M., & Kauffman, M. J. (2016). Resource waves: Phenological diversity enhances foraging opportunities for mobile consumers. Ecology, 97(5), 1099-1112. https://doi.org/10.1890/15-0554.1.
Ault, T. R., Schwartz, M. D., Zurita-Milla, R., Weltzin, J. F., & Betancourt, J. L. (2015). Trends and natural variability of spring onset in the coterminous United States as evaluated by a new gridded dataset of spring indices. Journal of Climate, 28(21), 8363-8378. https://doi.org/10.1175/JCLI-D-14-00736.1.
Bauer, S., McNamara, J. M., & Barta, Z. (2020). Environmental variability, reliability of information and the timing of migration. Proceedings of the Royal Society B: Biological Sciences, 287(1926), 20200622. https://doi.org/10.1098/rspb.2020.0622.
Bauer, S., Van Dinther, M., Høgda, K.-A., Klaassen, M., & Madsen, J. (2008). The consequences of climate-driven stop-over sites changes on migration schedules and fitness of Arctic geese. Journal of Animal Ecology, 77(4), 654-660. https://doi.org/10.1111/j.1365-2656.2008.01381.x.
Bayly, N. J., Rosenberg, K. V., Easton, W. E., Gómez, C., Carlisle, J., Ewert, D. N., Drake, A., & Goodrich, L. (2018). Major stopover regions and migratory bottlenecks for Nearctic-Neotropical landbirds within the neotropics: A review. Bird Conservation International, 28(1), 1-26. https://doi.org/10.1017/S0959270917000296.
BirdLife International and Handbook of Birds of the World. (2022). Bird species distribution maps of the world (2022.2) [dataset]. http://datazone.birdlife.org/species/requestdis.
Birds Canada. (2022). Motus: Fetch and use data from the Motus wildlife tracking system [computer software]. https://motusWTS.github.io/motus.
Bischof, R., Loe, L. E., Meisingset, E. L., Zimmermann, B., Van Moorter, B., Mysterud, A., Gaillard, A. E. J.-M., & McPeek, E. M. A. (2012). A migratory northern ungulate in the pursuit of spring: Jumping or surfing the green wave? The American Naturalist, 180(4), 407-424. https://doi.org/10.1086/667590.
Bowlin, M. S. (2005). Biotelemetry of New World thrushes during migration: Physiology, energetics and orientation in the wild. Integrative and Comparative Biology, 45(2), 295-304. https://doi.org/10.1093/icb/45.2.295.
Breheny, P., & Burchett, W. (2017). Visualization of regression models using visreg. The R Journal, 9, 56-71.
Briedis, M., Hahn, S., & Adamík, P. (2017). Cold spell en route delays spring arrival and decreases apparent survival in a long-distance migratory songbird. BMC Ecology, 17(1), 11. https://doi.org/10.1186/s12898-017-0121-4.
Carey, C. (2009). The impacts of climate change on the annual cycles of birds. Philosophical Transactions of the Royal Society, B: Biological Sciences, 364(1534), 3321-3330. https://doi.org/10.1098/rstb.2009.0182.
Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E., & Ries, L. (2015). Do growing degree days predict phenology across butterfly species? Ecology, 96(6), 1473-1479. https://doi.org/10.1890/15-0131.1.
Charmantier, A., & Gienapp, P. (2014). Climate change and timing of avian breeding and migration: Evolutionary versus plastic changes. Evolutionary Applications, 7(1), 15-28. https://doi.org/10.1111/eva.12126.
Cohen, E. B., Barrow, W. C., Buler, J. J., Deppe, J. L., Farnsworth, A., Marra, P. P., McWilliams, S. R., Mehlman, D. W., Wilson, R. R., Woodrey, M. S., & Moore, F. R. (2017). How do en route events around the Gulf of Mexico influence migratory landbird populations? The Condor, 119(2), 327-343. https://doi.org/10.1650/CONDOR-17-20.1.
Cohen, E. B., Németh, Z., Zenzal, T. J., Paxton, K. L., Diehl, R. H., Paxton, E. H., & Moore, F. R. (2015). Spring resource phenology and timing of songbird migration across the Gulf of Mexico. In E. M. Wood & J. L. Kellermann (Eds.), Phenological synchrony and bird migration (Vol. 47, pp. 63-82). CRC Press. https://doi.org/10.1201/b18011-8.
Cohen, E. B., Rushing, C. R., Moore, F. R., Hallworth, M. T., Hostetler, J. A., Gutierrez Ramirez, M., & Marra, P. P. (2019). The strength of migratory connectivity for birds en route to breeding through the Gulf of Mexico. Ecography, 42(4), 658-669. https://doi.org/10.1111/ecog.03974.
Connare, B. M., & Islam, K. (2022). Failure to advance migratory phenology in response to climate change may pose a significant threat to a declining Nearctic-Neotropical songbird. International Journal of Biometeorology, 66, 803-815. https://doi.org/10.1007/s00484-022-02239-9.
Crewe, T. L., Crysler, Z. J., & Taylor, P. D. (2018). Motus R book: A walk through the use of R for Motus automated radio-telemetry data. Birds Canada. https://motus.org/MotusRBook/.
Di Cecco, G. J., Belitz, M. W., Cooper, R. J., Larsen, E. A., Lewis, W. B., Ries, L., Guralnick, R. P., & Hurlbert, A. H. (2023). Phenology in adult and larval Lepidoptera from structured and unstructured surveys across eastern North America. Frontiers of Biogeography, 15(1), e56346. https://doi.org/10.21425/F5FBG56346.
Donnelly, A., Yu, R., Caffarra, A., Hanes, J., Liang, L., Desai, A. R., Liu, L., & Schwartz, M. D. (2017). Interspecific and interannual variation in the duration of spring phenophases in a northern mixed forest. Agricultural and Forest Meteorology, 243, 55-67. https://doi.org/10.1016/j.agrformet.2017.05.007.
Dossman, B. C., Rodewald, A. D., Studds, C. E., & Marra, P. P. (2022). Migratory birds with delayed spring departure migrate faster but pay the costs. Ecology, 104, e3938. https://doi.org/10.1002/ecy.3938.
Drent, R. H., Ebbinge, B. S., & Weijand, B. (1978). Balancing the energy budgets of arctic-breeding geese throughout the annual cycle: A progress report. Verhandlungen der Ornithologischen Gesellschaft in Bayern, 23, 239-264.
Gómez, C., Bayly, N. J., Norris, D. R., Mackenzie, S. A., Rosenberg, K. V., Taylor, P. D., Hobson, K. A., & Daniel Cadena, C. (2017). Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird. Scientific Reports, 7(1), 3405. https://doi.org/10.1038/s41598-017-03503-4.
González, A. M., Bayly, N. J., & Hobson, K. A. (2020). Earlier and slower or later and faster: Spring migration pace linked to departure time in a neotropical migrant songbird. Journal of Animal Ecology, 89(12), 2840-2851. https://doi.org/10.1111/1365-2656.13359.
González-Prieto, A. M., & Hobson, K. A. (2013). Environmental conditions on wintering grounds and during migration influence spring nutritional condition and arrival phenology of neotropical migrants at a northern stopover site. Journal of Ornithology, 154(4), 1067-1078. https://doi.org/10.1007/s10336-013-0975-y.
Graber, J. W., & Graber, R. R. (1983). Feeding rates of warblers in spring. The Condor, 85(2), 139-150. https://doi.org/10.2307/1367247.
Gwinner, E. (1996). Circadian and circannual programmes in avian migration. Journal of Experimental Biology, 199, 39-48.
Harrington, R., Woiwod, I., & Sparks, T. (1999). Climate change and trophic interactions. Trends in Ecology & Evolution, 14(4), 146-150. https://doi.org/10.1016/S0169-5347(99)01604-3.
Hedenström, A., & Alerstam, T. (1997). Optimum fuel loads in migratory birds: Distinguishing between time and energy minimization. Journal of Theoretical Biology, 189(3), 227-234. https://doi.org/10.1006/jtbi.1997.0505.
Horton, K. G., La Sorte, F. A., Sheldon, D., Lin, T.-Y., Winner, K., Bernstein, G., Maji, S., Hochachka, W. M., & Farnsworth, A. (2020). Phenology of nocturnal avian migration has shifted at the continental scale. Nature Climate Change, 10(1), 63-68. https://doi.org/10.1038/s41558-019-0648-9.
Horton, K. G., Morris, S. R., Van Doren, B. M., & Covino, K. M. (2023). Six decades of North American bird banding records reveal plasticity in migration phenology. Journal of Animal Ecology, 92(3), 738-750. https://doi.org/10.1111/1365-2656.13887.
Horton, K. G., Van Doren, B. M., La Sorte, F. A., Cohen, E. B., Clipp, H. L., Buler, J. J., Fink, D., Kelly, J. F., & Farnsworth, A. (2019). Holding steady: Little change in intensity or timing of bird migration over the Gulf of Mexico. Global Change Biology, 25(3), 1106-1118. https://doi.org/10.1111/gcb.14540.
Hurlbert, A. H., & Liang, Z. (2012). Spatiotemporal variation in avian migration phenology: Citizen science reveals effects of climate change. PLoS ONE, 7(2), e31662. https://doi.org/10.1371/journal.pone.0031662.
Jenni, L., & Schaub, M. (2003). Behavioural and physiological reactions to environmental variation in bird migration: A review. In P. Berthold, E. Gwinner, & E. Sonnenschein (Eds.), Avian migration (pp. 155-171). Springer. https://doi.org/10.1007/978-3-662-05957-9_10.
Kokko, H. (1999). Competition for early arrival in migratory birds. Journal of Animal Ecology, 68(5), 940-950. https://doi.org/10.1046/j.1365-2656.1999.00343.x.
Kölzsch, A., Bauer, S., de Boer, R., Griffin, L., Cabot, D., Exo, K.-M., van der Jeugd, H. P., & Nolet, B. A. (2015). Forecasting spring from afar? Timing of migration and predictability of phenology along different migration routes of an avian herbivore. Journal of Animal Ecology, 84(1), 272-283. https://doi.org/10.1111/1365-2656.12281.
La Sorte, F. A., & Graham, C. H. (2021). Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. Journal of Animal Ecology, 90(2), 343-355. https://doi.org/10.1111/1365-2656.13345.
Langin, K. M., Marra, P. P., Németh, Z., Moore, F. R., Kurt Kyser, T., & Ratcliffe, L. M. (2009). Breeding latitude and timing of spring migration in songbirds crossing the Gulf of Mexico. Journal of Avian Biology, 40(3), 309-316. https://doi.org/10.1111/j.1600-048X.2008.04496.x.
Liu, L., & Zhang, X. (2020). Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016. Scientific Reports, 10(1), Article 1. https://doi.org/10.1038/s41598-020-74804-4.
Lott, C. A., Langan, B. E., Mulrooney, M. B., Grau, R. T., & Miller, K. E. (2006). Stopover ecology of Nearctic-Neotropical migrant songbirds in hardwood hammocks of the Florida keys (Vol. 87). Florida Fish and Wildlife Research Institute.
Lüdecke, D. (2018). ggeffects: Tidy data frames of marginal effects from regression models. Journal of Open Source Software, 3(26), 772. https://doi.org/10.21105/joss.00772.
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139.
Mack, D. E., & Yong, W. (2020). Swainson's thrush (Catharus ustulatus), version 1.0. Birds of the World. https://doi.org/10.2173/bow.swathr.01.
Marra, P. P., Francis, C. M., Mulvihill, R. S., & Moore, F. R. (2005). The influence of climate on the timing and rate of spring bird migration. Oecologia, 142(2), 307-315. https://doi.org/10.1007/s00442-004-1725-x.
Mayor, S. J., Guralnick, R. P., Tingley, M. W., Otegui, J., Withey, J. C., Elmendorf, S. C., Andrew, M. E., Leyk, S., Pearse, I. S., & Schneider, D. C. (2017). Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Scientific Reports, 7(1), 1902. https://doi.org/10.1038/s41598-017-02045-z.
Melaas, E. K., Friedl, M. A., & Zhu, Z. (2013). Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data. Remote Sensing of Environment, 132, 176-185. https://doi.org/10.1016/j.rse.2013.01.011.
Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B., & Satzinger, P. (2008). Bird migration times, climate change, and changing population sizes. Global Change Biology, 14(9), 1959-1972. https://doi.org/10.1111/j.1365-2486.2008.01619.x.
Morbey, Y. E., Guglielmo, C. G., Taylor, P. D., Maggini, I., Deakin, J., Mackenzie, S. A., Brown, J. M., & Zhao, L. (2018). Evaluation of sex differences in the stopover behavior and postdeparture movements of wood-warblers. Behavioral Ecology, 29(1), 117-127. https://doi.org/10.1093/beheco/arx123.
Nemes, C., Marra, P. P., Zenzal, T. J., Jr., Collins, S. A., Dossman, B., Gerson, A. R., Gómez, C., González, A. M., Gutierrez Ramirez, M., Hamer, S. A., Marty, J., Vasseur, P. L., & Cohen, E. (2023). Data for Nemes et al. “Springing forward: Migrating songbirds catch up with the start of spring in North America” [data set]. Zenodo, https://doi.org/10.5281/zenodo.10094686.
O'Leary, D., Inouye, D., Dubayah, R., Huang, C., & Hurtt, G. (2020). Snowmelt velocity predicts vegetation green-wave velocity in mountainous ecological systems of North America. International Journal of Applied Earth Observation and Geoinformation, 89, 102110. https://doi.org/10.1016/j.jag.2020.102110.
Parrish, J. D. (2000). Behavioral, energetic, and conservation implications of foraging plasticity during migration. Studies in Avian Biology, 20, 53-70.
Paxton, K. L., Cohen, E. B., Paxton, E. H., Németh, Z., & Moore, F. R. (2014). El Niño-southern oscillation is linked to decreased energetic condition in long-distance migrants. PLoS ONE, 9(5), e95383. https://doi.org/10.1371/journal.pone.0095383.
Petit, D. R. (2000). Habitat use by landbirds along Nearctic-Neotropical migration routes: Implications for conservation of stopover habitats. Studies in Avian Biology, 20, 15-33.
Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jedrzejewska, B., Lima, M., & Kausrud, K. (2011). The normalized difference vegetation index (NDVI): Unforeseen successes in animal ecology. Climate Research, 46(1), 15-27. https://doi.org/10.3354/cr00936.
Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503-510. https://doi.org/10.1016/j.tree.2005.05.011.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2020). nlme: Linear and nonlinear mixed effects models (R Package version 3.1-144) [Computer software]. https://CRAN.R-project.org/package=nlme.
Polgar, C. A., & Primack, R. B. (2011). Leaf-out phenology of temperate woody plants: From trees to ecosystems. New Phytologist, 191(4), 926-941. https://doi.org/10.1111/j.1469-8137.2011.03803.x.
Porneluzi, P., Van Horn, M. A., & Donovan, T. M. (2020). Ovenbird (Seiurus aurocapilla), version 1.0. Birds of the World. https://doi.org/10.2173/bow.ovenbi1.01.
R Core Team. (2020). R: A language and environment for statistical computing (3.6.3) [Computer software]. R Foundation for Statistical Computing. https://www.R-project.org/.
Schmaljohann, H., Lisovski, S., & Bairlein, F. (2017). Flexible reaction norms to environmental variables along the migration route and the significance of stopover duration for total speed of migration in a songbird migrant. Frontiers in Zoology, 14(1), 17. https://doi.org/10.1186/s12983-017-0203-3.
Schwartz, M. D. (1998). Green-wave phenology. Nature, 394(6696), 839-840. https://doi.org/10.1038/29670.
Schwartz, M. D., Ault, T. R., & Betancourt, J. L. (2013). Spring onset variations and trends in the continental United States: Past and regional assessment using temperature-based indices. International Journal of Climatology, 33(13), 2917-2922. https://doi.org/10.1002/joc.3625.
Shariati-Najafabadi, M., Darvishzadeh, R., Skidmore, A. K., Kölzsch, A., Exo, K.-M., Nolet, B. A., Griffin, L., Stahl, J., Havinga, P. J. M., Meratnia, N., & Toxopeus, A. G. (2016). Environmental parameters linked to the last migratory stage of barnacle geese en route to their breeding sites. Animal Behaviour, 118, 81-95. https://doi.org/10.1016/j.anbehav.2016.05.018.
Shariatinajafabadi, M., Wang, T., Skidmore, A. K., Toxopeus, A. G., Kölzsch, A., Nolet, B. A., Exo, K.-M., Griffin, L., Stahl, J., & Cabot, D. (2014). Migratory herbivorous waterfowl track satellite-derived green wave index. PLoS ONE, 9(9), e108331. https://doi.org/10.1371/journal.pone.0108331.
Smith, R. J., & Moore, F. R. (2005). Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behavioral Ecology and Sociobiology, 57(3), 231-239. https://doi.org/10.1007/s00265-004-0855-9.
Strode, P. K. (2015). Phenological asynchrony between migrant songbirds and food resources during early springs: Initiation of a trophic cascade at a stopover site. In E. M. Wood & J. L. Kellermann (Eds.), Phenological synchrony and bird migration (Vol. 47, pp. 112-131). CRC Press. https://doi.org/10.1201/b18011-10.
Studds, C. E., & Marra, P. P. (2011). Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proceedings of the Royal Society B: Biological Sciences, 278(1723), 3437-3443. https://doi.org/10.1098/rspb.2011.0332.
Taylor, P. D., Crewe, T. L., Mackenzie, S. A., Lepage, D., Aubry, Y., Crysler, Z., Finney, G., Francis, C. M., Guglielmo, C. G., Hamilton, D. J., Holberton, R. L., Loring, P. H., Mitchell, G. W., Norris, D. R., Paquet, J., Ronconi, R. A., Smetzer, J. R., Smith, P. A., Welch, L. J., & Woodworth, B. K. (2017). The Motus Wildlife Tracking System: A collaborative research network to enhance the understanding of wildlife movement. Avian Conservation and Ecology, 12(1), art8. https://doi.org/10.5751/ACE-00953-120108.
Thorup, K., Tøttrup, A. P., Willemoes, M., Klaassen, R. H. G., Strandberg, R., Vega, M. L., Dasari, H. P., Araújo, M. B., Wikelski, M., & Rahbek, C. (2017). Resource tracking within and across continents in long-distance bird migrants. Science Advances, 3(1), e1601360. https://doi.org/10.1126/sciadv.1601360.
Tøttrup, A. P., Rainio, K., Coppack, T., Lehikoinen, E., Rahbek, C., & Thorup, K. (2010). Local temperature fine-tunes the timing of spring migration in birds. Integrative and Comparative Biology, 50(3), 293-304. https://doi.org/10.1093/icb/icq028.
Tøttrup, A. P., Thorup, K., Rainio, K., Yosef, R., Lehikoinen, E., & Rahbek, C. (2008). Avian migrants adjust migration in response to environmental conditions en route. Biology Letters, 4(6), 685-688. https://doi.org/10.1098/rsbl.2008.0290.
van Asch, M., & Visser, M. E. (2007). Phenology of forest caterpillars and their host trees: The importance of synchrony. Annual Review of Entomology, 52(1), 37-55. https://doi.org/10.1146/annurev.ento.52.110405.091418.
van der Graaf, S. A. J., Stahl, J., Klimkowska, A., Bakker, J. P., & Drent, R. H. (2006). Surfing on a green wave-How plant growth drives spring migration in the barnacle goose Branta leucopsis. Ardea, 94(3), 567-577.
Visser, M. E., & Both, C. (2005). Shifts in phenology due to global climate change: The need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272(1581), 2561-2569. https://doi.org/10.1098/rspb.2005.3356.
Whitaker, D. M., & Eaton, S. W. (2020). Northern Waterthrush (Parkesia noveboracensis), version 1.0. Birds of the World. https://doi.org/10.2173/bow.norwat.01.
Whitaker, D. M., Warkentin, I. G., McDermott, J. P. B., Lowther, P. E., Rimmer, C. C., Kessel, B., Johnson, S. L., & Ellison, W. G. (2020). Gray-cheeked thrush (Catharus minimus), version 1.0. Birds of the World. https://doi.org/10.2173/bow.gycthr.01.
White, K., Pontius, J., & Schaberg, P. (2014). Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty. Remote Sensing of Environment, 148, 97-107. https://doi.org/10.1016/j.rse.2014.03.017.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
Wood, E. M., & Pidgeon, A. M. (2015). Climatic extremes influence spring tree phenology and migratory songbird foraging behavior. In E. M. Wood & J. L. Kellermann (Eds.), Phenological synchrony and bird migration (pp. 132-147). CRC Press. https://doi.org/10.1201/b18011-11.
Youngflesh, C., Montgomery, G. A., Saracco, J. F., Miller, D. A. W., Guralnick, R. P., Hurlbert, A. H., Siegel, R. B., LaFrance, R., & Tingley, M. W. (2023). Demographic consequences of phenological asynchrony for North American songbirds. Proceedings of the National Academy of Sciences of the United States of America, 120(28), e2221961120. https://doi.org/10.1073/pnas.2221961120.
Youngflesh, C., Socolar, J., Amaral, B. R., Arab, A., Guralnick, R. P., Hurlbert, A. H., LaFrance, R., Mayor, S. J., Miller, D. A. W., & Tingley, M. W. (2021). Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nature Ecology & Evolution, 5(7), 987-994. https://doi.org/10.1038/s41559-021-01442-y.
Zenzal, T. J., Johnson, D., Moore, F. R., & Németh, Z. (2023). Local weather and endogenous factors affect the initiation of migration in short- and medium-distance songbird migrants. Journal of Avian Biology, 2023, e03029. https://doi.org/10.1111/jav.03029.
Zuckerberg, B., Fink, D., La Sorte, F. A., Hochachka, W. M., & Kelling, S. (2016). Novel seasonal land cover associations for eastern North American forest birds identified through dynamic species distribution modelling. Diversity and Distributions, 22(6), 717-730. https://doi.org/10.1111/ddi.12428.
Zurita-Milla, R., Goncalves, R., Izquierdo-Verdiguier, E., & Ostermann, F. O. (2020). Exploring spring onset at continental scales: Mapping phenoregions and correlating temperature and satellite-based phenometrics. IEEE Transactions on Big Data, 6(3), 583-593. https://doi.org/10.1109/TBDATA.2019.2926292.
Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. Springer.
معلومات مُعتمدة: American Ornithologists' Union; Birds Canada; Cornell Lab of Ornithology; Environment and Climate Change Canada; Louisiana Department of Wildlife and Fisheries; NA17NOS4510092 National Oceanic and Atmospheric Administration; IOS-1656726 National Science Foundation; LTREB 1242584 National Science Foundation; Smithsonian Institution; AID-0AA-A-11-00012 United States Agency for International Development; University of Maryland; University of Maryland Center for Environmental Science; Wilson Ornithological Society; Schubot Center for Avian Health, Texas A&M University
فهرسة مساهمة: Keywords: Motus; animal migration; automated radio telemetry; green wave; migration rate; phenology; songbird; spring onset
Local Abstract: [Publisher, Spanish; Castilian] En las regiones templadas, el patrón anual de inicio de la primavera puede concebirse como una “ola verde” de vegetación emergente que se desplaza por los continentes desde las latitudes bajas a las altas, lo que significa una mayor disponibilidad de alimento para los consumidores. Muchos herbívoros migratorios “surfean” estas olas de recursos, programando sus movimientos para aprovechar los picos de vegetación a principios de primavera. Aunque menos estudiados a nivel de individuo, los consumidores secundarios, como las aves terrestres insectívoras, también pueden seguir la fenología de la vegetación durante la migración. Hipotetizamos es que cuatro especies de aves terrestres que se alimentan en el suelo en el este de Norteamérica - dos reinitas y dos zorzales - programan sus migraciones primaverales para que coincidan con las fases más tardías de la fenología de la vegetación, que se corresponden con un aumento de artrópodos, y predijimos que sincronizarian su ritmo de migración con la ola verde, pero que irían detrás de ella en lugar de surfear su borde delantero. También hipotetizamos que el ritmo al que avanza la primavera en el continente influye en las tasas de migración de las aves, de modo que los individuos ajustan la fecha de migración dentro de Norteamérica a las condiciones fenológicas que experimentan en ruta. Para comprobar nuestras hipótesis, utilizamos una red automatizada de radiotelemetría a escala continental para seguir individuos en su migración primaveral entre la región de la costa del Golfo de EEUU y las localidades septentrionales más cercanas a sus zonas de cría. Medimos la fenología de la vegetación utilizando dos métricas del inicio de la primavera, el índice de la fecha de la primera hoja primaveral y el índice de vegetación de diferencia normalizada (NDVI), luego calculamos la tasa y el tiempo de la aparaciòn de la primavera relativo a las detecciones de aves. Todos los individuos llegaron al sureste de EEUU bastante después del inicio de la primavera local. Contrario a nuestras expectativas, descubrimos que las aves terrestres mostraron un patrón de Carrera para “ponerse al día”: los individuos migraron frente a la ola verde del inicio de la primavera, acercándose efectivamente al inicio de la primavera a medida que llegaban a las zonas de cría. Mientras que el surfing de las olas de recursos es una estrategia migratoria bien documentada para las aves acuáticas herbívoras y los ungulados, los individuos de aves terrestres de nuestro estudio migraron más rápido que la ola verde y alcanzaron cada vez más el borde delantero en ruta. En consecuencia, las aves terrestres experimentan una serie de fases fenológicas de la vegetación mientras migran a través de Norteamérica, lo que sugiere flexibilidad en su capacidad para explotar recursos variables en primavera.
تواريخ الأحداث: Date Created: 20231116 Date Completed: 20240307 Latest Revision: 20240327
رمز التحديث: 20240327
DOI: 10.1111/1365-2656.14025
PMID: 37970639
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-2656
DOI:10.1111/1365-2656.14025