دورية أكاديمية

How to objectively evaluate the impact of image-guided surgery technologies.

التفاصيل البيبلوغرافية
العنوان: How to objectively evaluate the impact of image-guided surgery technologies.
المؤلفون: Sorger JM; Intuitive, 1020 Kifer Road, Sunnyvale, CA, 94086, USA. jonathan.sorger@intusurg.com.
المصدر: European journal of nuclear medicine and molecular imaging [Eur J Nucl Med Mol Imaging] 2024 Aug; Vol. 51 (10), pp. 2869-2877. Date of Electronic Publication: 2023 Nov 16.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Berlin Country of Publication: Germany NLM ID: 101140988 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1619-7089 (Electronic) Linking ISSN: 16197070 NLM ISO Abbreviation: Eur J Nucl Med Mol Imaging Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer-Verlag Berlin, 2002-
مواضيع طبية MeSH: Surgery, Computer-Assisted*/methods, Humans
مستخلص: Purpose: This manuscript aims to provide a better understanding of methods and techniques with which one can better quantify the impact of image-guided surgical technologies.
Methods: A literature review was conducted with regard to economic and technical methods of medical device evaluation in various countries. Attention was focused on applications related to image-guided interventions that have enabled procedures to be performed in a minimally invasive manner, produced superior clinical outcomes, or have become standard of care.
Results: The review provides examples of successful implementations and adoption of image-guided surgical techniques, mostly in the field of neurosurgery. Failures as well as newly developed technologies still undergoing cost-efficacy analysis are discussed.
Conclusion: The field of image-guided surgery has evolved from solely using preoperative images to utilizing highly specific tools and software to provide more information to the interventionalist in real time. While deformations in soft tissue often preclude the use of such instruments outside of neurosurgery, recent developments in optical and radioactive guidance have enabled surgeons to better account for organ motion and provide feedback to the surgeon as tissue is cut. These technologies are currently undergoing value assessments in many countries and hold promise to improve outcomes for patients, surgeons, care teams, payors, and society in general.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Jolesz FA, Kettenbach J, Grundfest WS. Cost-effectiveness of image-guided surgery. Acad Radiol. 1998;5(Suppl 2):S428–31. (PMID: 9750876)
Daniel J. The X-rays. Science (80-). 1896;3(67):562–3.
Sansare K, Khanna V, Karjodkar F. Early victims of X-rays: a tribute and current perception. Dentomaxillofac Radiol. 2011;40(2):123–5. (PMID: 212395763520298)
Hernigou P, Pariat J. History of internal fixation (part 1): early developments with wires and plates before World War II. Int Orthop. 2017;41(6):1273–83. (PMID: 27878623)
Dandy WE. Ventriculography following the injection of air into the ventricles. Ann Surg. 1918;68(1):5–11. (PMID: 178639461426769)
Moniz E. Arterial encephalography, its importance in the localization of cerebral tumors. Rev Neurol. 1927;2:72–90.
Thomas NWD, Sinclair J. Image-guided neurosurgery: history and current clinical applications. J Med imaging Radiat Sci. 2015;46(3):331–42. (PMID: 31052141)
Porter ME, Teisberg EO. Redefining health care: creating value-based competition on results. Harvard business press; 2006.
Traverso LW. Technology and surgery. Surg Clin North Am. 1996;76(1):129–38. (PMID: 8629196)
Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff. 2008;27(3):759–69.
Sikka R, Morath JM, Leape L. The quadruple aim: care, health, cost and meaning in work. BMJ Qual Saf. 2015;24(10):608–10. (PMID: 26038586)
Wallace S, Teisberg EO. Measuring what matters: connecting excellence, professionalism, and empathy. Brain Inj Prof. 2016;12:12–5.
O’Rourke B, Oortwijn W, Schuller T, International Joint Task Group. The new definition of health technology assessment: a milestone in international collaboration. Int J Technol Assess Health Care. 2020;36(3):187–90. (PMID: 32398176)
Fontrier A-M, Visintin E, Kanavos P. Similarities and differences in health technology assessment systems and implications for coverage decisions: evidence from 32 countries. PharmacoEconomics - Open. 2022;6(3):315–28. (PMID: 34845671)
Detsky AS. A clinician’s guide to cost-effectiveness analysis. Ann Intern Med. 1990;113(2):147. (PMID: 2113784)
Cowling T, Nayakarathna R, Wills AL, Tankala D, Paul Roc N, Barakat S. Early access for innovative oncology medicines: a different story in each nation. J Med Econ. 2023;26(1):944–53. (PMID: 37466223)
Cangelosi M, Chahar A, Eggington S. Evolving use of health technology assessment in medical device procurement- global systematic review: an ISPOR special interest group report. Value Health. 2023;26(11):1581–1589.
Hyeraci G, Trippoli S, Rivano M, Messori A. Estimation of value-based price for 48 high-technology medical devices. Cureus. 2023;15(6):e39934. (PMID: 3728782010243399)
Escarce JJ. Externalities in hospitals and physician adoption of a new surgical technology: an exploratory analysis. J Health Econ. 1996;15(6):715–34. (PMID: 10165265)
Montgomery K, Schneller ES. Hospitals’ strategies for orchestrating selection of physician preference items. Milbank Q. 2007;85(2):307–35. (PMID: 175171182690325)
Lettieri E, Masella C. Priority setting for technology adoption at a hospital level: Relevant issues from the literature. Health Policy. 2009;90(1):81–8. (PMID: 18783844)
Peters TM. Image-guided surgery: from X-rays to virtual reality. Comput Methods Biomech Biomed Engin. 2000;4(1):27–57. (PMID: 11264860)
Nields MW. Cost-effectiveness of image-guided core needle biopsy versus surgery in diagnosing breast cancer. Acad Radiol. 1996;3:S138–40. (PMID: 8796544)
Bucholz RD. Introduction to journal of image guided surgery. J Image Guid Surg. 1995;1(1):1–3. (PMID: 9079420)
Peluso F, Gybels J. Computer calculation of two target trajectory with ‘centre of arc-target’ stereotaxic equipment. Acta Neurochir (Wien). 1969;21(2–3):173–80. (PMID: 4903866)
Thompson CJ, Bertrand G. A computer program to aid the neurosurgeon to locate probes used during stereotaxic surgery on deep cerebral structures. Comput Programs Biomed. 1972;2(4):265–76. (PMID: 4592994)
Herman GT, Liu HK. Three-dimensional display of human organs from computed tomograms. Comput Graph Image Process. 1979;9(1):1–21.
Heilbrun MP, McDonald P, Wiker C, Koehler S, Peters W. Stereotactic localization and guidance using a machine vision technique. Stereotact Funct Neurosurg. 1992;58(1–4):94–8. (PMID: 1439358)
Spiegel EA, Wycis HT, Marks M, Lee AJ. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50. (PMID: 17777432)
Maciunas RJ, Galloway RL, Latimer JW. The application accuracy of stereotactic frames. Neurosurgery. 1994;35(4):682–94 (discussion 694-5). (PMID: 7808612)
Galloway RL, Maciunas RJ, Edwards CA. Interactive image-guided neurosurgery. IEEE Trans Biomed Eng. 1992;39(12):1226–31. (PMID: 1487285)
Schlöndorff G, Mösges R, Meyer-Ebrecht D, Krybus W, Adams L. CAS (computer assisted surgery). A new procedure in head and neck surgery. HNO. 1989;37(5):187–90. (PMID: 2732101)
Sandeman DR, Gill SS. The impact of interactive image guided surgery: the Bristol experience with the ISG/Elekta viewing Wand. Acta Neurochir Suppl. 1995;64:54–8. (PMID: 8748584)
Klimek L, Mösges R, Laborde G, Korves B. Computer-assisted image-guided surgery in pediatric skull-base procedures. J Pediatr Surg. 1995;30(12):1673–6. (PMID: 8749921)
Olivier A, Alonso-Vanegas M, Comeau R, Peters TM. Image-guided surgery of epilepsy. Neurosurg Clin N Am. 1996;7(2):229–43. (PMID: 8726438)
Olson JJ, Shepherd S, Bakay RA. The EasyGuide Neuro image-guided surgery system. Neurosurgery. 1997;40(5):1092–6. (PMID: 9149273)
Rohling R, Munger P, Hollerbach JM, Peter T. Comparison of relative accuracy between a mechanical and an optical position tracker for image-guided neurosurgery. J Image Guid Surg. 1995;1(1):30–4. (PMID: 9079424)
Hummel J, Figl M, Kollmann C, Bergmann H, Birkfellner W. Evaluation of a miniature electromagnetic position tracker. Med Phys. 2002;29(10):2205–12. (PMID: 12408292)
Birkfellner W, Watzinger F, Wanschitz F, Ewers R, Bergmann H. Calibration of tracking systems in a surgical environment. IEEE Trans Med Imaging. 1998;17(5):737–42. (PMID: 9874297)
Ukimura O. Image-guided surgery in minimally invasive urology. Curr Opin Urol. 2010;20(2):136–40. (PMID: 20098326)
Pfeiffer M, Riediger C, Weitz J, Speidel S. Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks. Int J Comput Assist Radiol Surg. 2019;14(7):1147–55. (PMID: 30993520)
Smith JS, et al. Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol. 2008;26(8):1338–45. (PMID: 18323558)
Sasagawa T. Rate and factors associated with misplacement of percutaneous pedicle screws in the thoracic spine. Spine Surg Relat Res. 2023;7(2):155–60. (PMID: 37041869)
Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J. 2000;9(3):235–40. (PMID: 109054433611394)
Bonello J-P et al. Comparison of major spine navigation platforms based on key performance metrics: a meta-analysis of 16,040 screws. Eur Spine J. 2023;32(9):2937–2948.
Lee YC, Lee R. Image-guided pedicle screws using intraoperative cone-beam CT and navigation. A cost-effectiveness study. J Clin Neurosci. 2020;72:68–71. (PMID: 31964560)
Fried MP, Hsu L, Topulos GP, Jolesz FA. Image-guided surgery in a new magnetic resonance suite: preclinical considerations. Laryngoscope. 1996;106(4):411–7. (PMID: 8614214)
Kucharczyk W, Bernstein M. Do the benefits of image guidance in neurosurgery justify the costs? From stereotaxy to intraoperative MR. AJNR Am J Neuroradiol. 1997;18(10):1855–9. (PMID: 94034418337367)
Hadani M, Spiegelman R, Feldman Z, Berkenstadt H, Ram Z. Novel, compact, intraoperative magnetic resonance imaging-guided system for conventional neurosurgical operating rooms. Neurosurgery. 2001;48(4):799–807 (discussion 807-9). (PMID: 11322440)
Lipson AC, Gargollo PC, Black PM. Intraoperative magnetic resonance imaging: considerations for the operating room of the future. J Clin Neurosci. 2001;8(4):305–10. (PMID: 11437567)
Food and Drug Administration. Application of human factors engineering principles for combination products: questions and answers. 2023. https://www.fda.gov/media/171855/download . Accessed 1 Oct 2023.
Jatoi I, Kunkler IH. Omission of sentinel node biopsy for breast cancer: historical context and future perspectives on a modern controversy. Cancer. 2021;127(23):4376–83. (PMID: 34614216)
Hersh EH, King TA. De-escalating axillary surgery in early-stage breast cancer. Breast. 2022;62:S43–9. (PMID: 34949533)
Morton DL. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127(4):392. (PMID: 1558490)
Giuliano AE, Kirgan DM, Guenther JM, Morton DL. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg. 1994;220(3):391–8 (discussion 398-401). (PMID: 80929051234400)
Gershenwald JE, et al. Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol. 1999;17(3):976–83. (PMID: 10071292)
Gutzmer R, et al. Sentinel lymph node status is the most important prognostic factor for thick (> or = 4 mm) melanomas. J Dtsch Dermatol Ges. 2008;6(3):198–203. (PMID: 18093216)
Krag DN, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010;11(10):927–33. (PMID: 208637593041644)
Ito N, Fukuta M, Tokushima T, Nakai K, Ohgi S. Sentinel node navigation surgery using indocyanine green in patients with lung cancer. Surg Today. 2004;34(7):581–5. (PMID: 15221551)
Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12(3):211–5. (PMID: 16110291)
Nimura H, Narimiya N, Mitsumori N, Yamazaki Y, Yanaga K, Urashima M. Infrared ray electronic endoscopy combined with indocyanine green injection for detection of sentinel nodes of patients with gastric cancer. Br J Surg. 2004;91(5):575–9. (PMID: 15122608)
Abe N, et al. Laparoscopic lymph node dissection after endoscopic submucosal dissection: a novel and minimally invasive approach to treating early-stage gastric cancer. Am J Surg. 2005;190(3):496–503. (PMID: 16105543)
Bonadio L, et al. Indocyanine green-enhanced fluorangiography (ICGf) in laparoscopic extraperitoneal rectal cancer resection. Updates Surg. 2020;72(2):477–82. (PMID: 32072407)
Watanabe J, et al. Indocyanine green fluorescence imaging to reduce the risk of anastomotic leakage in laparoscopic low anterior resection for rectal cancer: a propensity score-matched cohort study. Surg Endosc. 2020;34(1):202–8. (PMID: 30877565)
Alekseev M, Rybakov E, Shelygin Y, Chernyshov S, Zarodnyuk I. A study investigating the perfusion of colorectal anastomoses using fluorescence angiography: results of the FLAG randomized trial. Color Dis. 2020;22(9):1147–53.
Liu RQ, et al. Cost analysis of indocyanine green fluorescence angiography for prevention of anastomotic leakage in colorectal surgery. Surg Endosc. 2022;36(12):9281–7. (PMID: 35290507)
De Nardi P, et al. Intraoperative angiography with indocyanine green to assess anastomosis perfusion in patients undergoing laparoscopic colorectal resection: results of a multicenter randomized controlled trial. Surg Endosc. 2020;34(1):53–60. (PMID: 30903276)
Azari F et al. State of the art: precision surgery guided by intraoperative molecular imaging. J Nucl Med. 2022;63(11):1620–27.
Debie P, Hernot S. Emerging fluorescent molecular tracers to guide intra-operative surgical decision-making. Front Pharmacol. 2019;10:510.
Hernot S, van Manen L, Debie P, Mieog JSD, Vahrmeijer AL. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019;20(7):e354–67. (PMID: 31267970)
Wang LG, Gibbs SL. Improving precision surgery: a review of current intraoperative nerve tissue fluorescence imaging. Curr Opin Chem Biol. 2023;76: 102361. (PMID: 37454623)
Schouw HM, et al. Targeted optical fluorescence imaging: a meta-narrative review and future perspectives. Eur J Nucl Med Mol Imaging. 2021;48(13):4272–92. (PMID: 346335098566445)
Stummer W, et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42(3):518–25 (discussion 525-6). (PMID: 9526986)
Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen H-J. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401. (PMID: 16648043)
Sloan AE, Fosdal M, Lobb WB, and Mayol Del Valle MA. Cost-effectiveness of glean guided surgery compared to conventional white light surgery for high grade glioma, 2023. [Online]. Available: https://www.ispor.org/docs/default-source/intl2023/ispor23fosdalee396poster-pdf.pdf?sfvrsn=2928d9c1_0 . Accessed: 06-Sep-2023.
Slof J, Díez Valle R, Galván J. Cost-effectiveness of 5-aminolevulinic acid-induced fluorescence in malignant glioma surgery. Neurologia. 2015;30(3):163–8. (PMID: 24468659)
Eatz TA, Eichberg DG, Lu VM, Di L, Komotar RJ, Ivan ME. Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J Neurooncol. 2022;156(2):233–56. (PMID: 34989964)
van Dam GM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17(10):1315–9. (PMID: 21926976)
Goldstein RE, Blevins L, Delbeke D, Martin WH. Effect of minimally invasive radioguided parathyroidectomy on efficacy, length of stay, and costs in the management of primary hyperparathyroidism. Ann Surg. 2000;231(5):732–42. (PMID: 107677951421061)
Li M, Zelchan R, Orlova A. The performance of FDA-approved PET imaging agents in the detection of prostate cancer. Biomedicines. 2022;10(10):2533. (PMID: 362897959599369)
Basso Dias A, et al. Impact of 18F-DCFPyL PET/MRI in selecting men with low-/intermediate-risk prostate cancer for focal ablative therapies. Clin Nucl Med. 2023;48(10):e462–7. (PMID: 37682613)
Sweat SD, Pacelli A, Murphy GP, Bostwick DG. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52(4):637–40. (PMID: 9763084)
Bostwick DG, Pacelli A, Blute M, Roche P, Murphy GP. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer. 1998;82(11):2256–61. (PMID: 9610707)
Wynant GE, et al. Immunoscintigraphy of prostatic cancer: preliminary results with111in-labeled monoclonal antibody 7E11-C5.3 (CYT-356). Prostate. 1991;18(3):229–41. (PMID: 2020619)
Aytu Biosciences Annual Report. 2017. [Online]. Available: https://tinyurl.com/aytubiosciences . Accessed: 06-Sep-2023.
Oderda et al M. Robot-assisted PSMA-radioguided surgery to assess surgical margins and nodal metastases in prostate cancer patients: report on three cases using an intraoperative PET-CT specimen imager. Urology. 2023 (in press).
Yossepowitch O, et al. Positive surgical margins in radical prostatectomy: outlining the problem and its long-term consequences. Eur Urol. 2009;55(1):87–99. (PMID: 18838211)
Kim M, Yoo D, Pyo J, Cho W. Clinicopathological significances of positive surgical resection margin after radical prostatectomy for prostatic cancers: a meta-analysis. Medicina (B Aires). 2022;58(9):1251.
de Feria Cardet RE, et al. Is prostate-specific membrane antigen positron emission tomography/computed tomography imaging cost-effective in prostate cancer: an analysis informed by the proPSMA trial. Eur Urol. 2021;79(3):413–8. (PMID: 33341285)
Holzgreve A et al. Is PSMA PET/CT cost-effective for the primary staging in prostate cancer? First results for European countries and the USA based on the proPSMA trial. Eur J Nucl Med Mol Imaging. 2023;50(12):3750–54.
Valk PE, Pounds TR, Tesar RD, Hopkins DM, Haseman MK. Cost-effectiveness of PET imaging in clinical oncology. Nucl Med Biol. 1996;23(6):737–43. (PMID: 8940715)
Centers for Medicare and Medicaid Services. National coverage determination - PET scans. 100–3, 2003. [Online]. Available: https://www.cms.gov/medicare-coverage-database/view/ncd.aspx?ncdid=211&ncdver=2 . Accessed 7 Jan 2023.
Kogler AK et al. Evaluation of camera-based freehand SPECT in preoperative sentinel lymph node mapping for melanoma patients. EJNMMI Res. 2020;10(1).
Maurer T, et al. Prostate-specific membrane antigen–radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol. 2015;68(3):530–4. (PMID: 25957851)
Maurer T, et al. 99mTechnetium-based prostate-specific membrane antigen–radioguided surgery in recurrent prostate cancer. Eur Urol. 2019;75(4):659–66. (PMID: 29625755)
Stibbe JA, et al. First-in-patient study of OTL78 for intraoperative fluorescence imaging of prostate-specific membrane antigen-positive prostate cancer: a single-arm, phase 2a, feasibility trial. Lancet Oncol. 2023;24(5):457–67. (PMID: 37062295)
Nguyen HG et al. First-in-human evaluation of a prostate-specific membrane antigen–targeted near-infrared fluorescent small molecule for fluorescence-based identification of prostate cancer in patients with high-risk prostate cancer undergoing robotic-assisted prostatectomy. Eur Urol Oncol. 2023 (in press).
Berrens A-C, et al. State of the art in prostate-specific membrane antigen–targeted surgery—a systematic review. Eur Urol Open Sci. 2023;54:43–55. (PMID: 3736120010285550)
فهرسة مساهمة: Keywords: Evaluation; Image-guided surgery; Value
تواريخ الأحداث: Date Created: 20231116 Date Completed: 20240805 Latest Revision: 20240805
رمز التحديث: 20240805
DOI: 10.1007/s00259-023-06504-w
PMID: 37971499
قاعدة البيانات: MEDLINE
الوصف
تدمد:1619-7089
DOI:10.1007/s00259-023-06504-w