دورية أكاديمية

Virtual Planning and Patient-Specific Graft Design for Aortic Repairs.

التفاصيل البيبلوغرافية
العنوان: Virtual Planning and Patient-Specific Graft Design for Aortic Repairs.
المؤلفون: Aslan S; Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA. saslan2@jhu.edu., Liu X; Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.; Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA., Wu Q; Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA., Mass P; Division of Cardiology, Children's National Hospital, Washington, DC, USA., Loke YH; Division of Cardiology, Children's National Hospital, Washington, DC, USA., Johnson J; Nanofiber Solutions, Dublin, OH, USA., Huddle J; Nanofiber Solutions, Dublin, OH, USA., Olivieri L; Division of Cardiology, Children's National Hospital, Washington, DC, USA., Hibino N; Section of Cardiac Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL, USA., Krieger A; Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
المصدر: Cardiovascular engineering and technology [Cardiovasc Eng Technol] 2024 Apr; Vol. 15 (2), pp. 123-136. Date of Electronic Publication: 2023 Nov 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101531846 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-4098 (Electronic) Linking ISSN: 1869408X NLM ISO Abbreviation: Cardiovasc Eng Technol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Springer
مواضيع طبية MeSH: Patient-Specific Modeling* , Hemodynamics* , Blood Vessel Prosthesis* , Aortic Coarctation*/surgery , Aortic Coarctation*/physiopathology , Aortic Coarctation*/diagnostic imaging , Models, Cardiovascular* , Blood Vessel Prosthesis Implantation*/instrumentation , Prosthesis Design*, Humans ; Treatment Outcome ; Male ; Computed Tomography Angiography ; Aorta, Thoracic/surgery ; Aorta, Thoracic/physiopathology ; Aorta, Thoracic/diagnostic imaging ; Female ; Hydrodynamics ; Aortography ; Clinical Decision-Making ; Surgery, Computer-Assisted
مستخلص: Purpose: Patients presenting with coarctation of the aorta (CoA) may also suffer from co-existing transverse arch hypoplasia (TAH). Depending on the risks associated with the surgery and the severity of TAH, clinicians may decide to repair only CoA, and monitor the TAH to see if it improves as the patient grows. While acutely successful, eventually hemodynamics may become suboptimal if TAH is left untreated. The objective of this work aims to develop a patient-specific surgical planning framework for predicting and assessing postoperative outcomes of simple CoA repair and comprehensive repair of CoA and TAH.
Methods: The surgical planning framework consisted of virtual clamp placement, stenosis resection, and design and optimization of patient-specific aortic grafts that involved geometrical modeling of the graft and computational fluid dynamics (CFD) simulation for evaluating various surgical plans. Time-dependent CFD simulations were performed using Windkessel boundary conditions at the outlets that were obtained from patient-specific non-invasive pressure and flow data to predict hemodynamics before and after the virtual repairs. We applied the proposed framework to investigate optimal repairs for six patients (n = 6) diagnosed with both CoA and TAH. Design optimization was performed by creating a combination of a tubular graft and a waterslide patch to reconstruct the aortic arch. The surfaces of the designed graft were parameterized to optimize the shape.
Results: Peak systolic pressure drop (PSPD) and time-averaged wall shear stress (TAWSS) were used as performance metrics to evaluate surgical outcomes of various graft designs and implantation. The average PSPD improvements were 28% and 44% after the isolated CoA repair and comprehensive repair, respectively. Maximum values of TAWSS were decreased by 60% after CoA repair and further improved by 22% after the comprehensive repair. The oscillatory shear index was calculated and the values were confirmed to be in the normal range after the repairs.
Conclusion: The results showed that the comprehensive repair outperforms the simple CoA repair and may be more advantageous in the long term in some patients. We demonstrated that the surgical planning and patient-specific flow simulations could potentially affect the selection and outcomes of aorta repairs.
(© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.)
References: Alkashkari, W., S. Albugami, and Z. M. Hijazi. Management of coarctation of the aorta in adult patients: state of the art. Korean Circ. J. 49:298–313, 2019. https://doi.org/10.4070/kcj.2018.0433 . (PMID: 10.4070/kcj.2018.0433308957576428953)
Meadows, J., M. Minahan, D. B. McElhinney, et al. Intermediate outcomes in the prospective, multicenter coarctation of the aorta stent trial (COAST). Circulation. 131:1656–1664, 2015. https://doi.org/10.1161/CIRCULATIONAHA.114.013937 . (PMID: 10.1161/CIRCULATIONAHA.114.01393725869198)
Yang, L., X. Chua, D. D. Rajgor, et al. A systematic review and meta-analysis of outcomes of transcatheter stent implantation for the primary treatment of native coarctation. Int. J. Cardiol. 223:1025–1034, 2016. https://doi.org/10.1016/j.ijcard.2016.08.295 . (PMID: 10.1016/j.ijcard.2016.08.29527592045)
LaDisa, J. F., R. J. Dholakia, C. A. Figueroa, et al. Computational simulations demonstrate altered wall shear stress in aortic coarctation patients treated by resection with end-to-end anastomosis. Congenit. Heart. Dis. 6:432–443, 2011. https://doi.org/10.1111/j.1747-0803.2011.00553.x . (PMID: 10.1111/j.1747-0803.2011.00553.x218013153208403)
Wendell, D. C., I. Friehs, M. M. Samyn, et al. Treating a 20 mmHg gradient alleviates myocardial hypertrophy in experimental aortic coarctation. J. Surg. Res. 218:194–201, 2017. https://doi.org/10.1016/j.jss.2017.05.053 . (PMID: 10.1016/j.jss.2017.05.053289858495679105)
Nguyen, L., and S. C. Cook. Coarctation of the aorta: strategies for improving outcomes. Cardiol. Clin. 33:521–530, 2015. https://doi.org/10.1016/j.ccl.2015.07.011 . (PMID: 10.1016/j.ccl.2015.07.01126471817)
Ma, Z.-L., J. Yan, S.-J. Li, et al. Coarctation of the aorta with aortic arch hypoplasia: midterm outcomes of aortic arch reconstruction with autologous pulmonary artery patch. Chin. Med. J. (Engl.). 130:2802–2807, 2017. https://doi.org/10.4103/0366-6999.215279 . (PMID: 10.4103/0366-6999.21527928936993)
Thomson, J., A. Mulpur, R. Guerrero, et al. Outcome after extended arch repair for aortic coarctation. Heart. 2006. https://doi.org/10.1136/hrt.2004.058685 . (PMID: 10.1136/hrt.2004.05868515845612)
Soynov, I., Y. Sinelnikov, Y. Gorbatykh, et al. Modified reverse aortoplasty versus extended anastomosis in patients with coarctation of the aorta and distal arch hypoplasia. Eur. J. Cardio-Thorac. Surg. 53:254–261, 2018. https://doi.org/10.1093/ejcts/ezx249 . (PMID: 10.1093/ejcts/ezx249)
Wen, S., J. Cen, J. Chen, et al. The application of autologous pulmonary artery in surgical correction of complicated aortic arch anomaly. J. Thorac. Dis. 8:3301–3306, 2016. (PMID: 10.21037/jtd.2016.11.43280666105179460)
Quennelle, S., A. J. Powell, T. Geva, and A. Prakash. Persistent aortic arch hypoplasia after coarctation treatment is associated with late systemic hypertension. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis.4:e001978, 2015. https://doi.org/10.1161/JAHA.115.001978 . (PMID: 10.1161/JAHA.115.001978)
Rakhra, S. S., M. Lee, A. J. Iyengar, et al. Poor outcomes after surgery for coarctation repair with hypoplastic arch warrants more extensive initial surgery and close long-term follow-up. Interact. Cardiovasc. Thorac. Surg. 16:31–36, 2013. https://doi.org/10.1093/icvts/ivs301 . (PMID: 10.1093/icvts/ivs30123059853)
Liu, X., N. Hibino, Y.-H. Loke, et al. Surgical planning and optimization of patient-specific Fontan grafts with uncertain post-operative boundary conditions and anastomosis displacement. IEEE Trans. Biomed. Eng. 2022. https://doi.org/10.1109/TBME.2022.3170922 . (PMID: 10.1109/TBME.2022.31709223582000110000308)
Loke, Y.-H., B. Kim, P. Mass, et al. Role of surgeon intuition and computer-aided design in Fontan optimization: a computational fluid dynamics simulation study. J. Thorac. Cardiovasc. Surg. 160:203-212.e2, 2020. https://doi.org/10.1016/j.jtcvs.2019.12.068 . (PMID: 10.1016/j.jtcvs.2019.12.068320574547888288)
Trusty, P. M., Z. A. Wei, T. C. Slesnick, et al. The first cohort of prospective Fontan surgical planning patients with follow up data: how accurate is surgical planning? J. Thorac. Cardiovasc. Surg. 157:1146–1155, 2019. https://doi.org/10.1016/j.jtcvs.2018.11.102 . (PMID: 10.1016/j.jtcvs.2018.11.10231264966)
Wu, Q., V. Cleveland, S. Aslan, et al. Hemodynamics of convergent cavopulmonary connection with ventricular assist device for Fontan surgery: a computational and experimental study. In: Bioinformatics, 2023.
Liu, X., B. Kim, Y.-H. Loke, et al. Semi-automatic planning and three-dimensional electrospinning of patient-specific grafts for Fontan surgery. IEEE Trans. Biomed. Eng. 69:186–198, 2022. https://doi.org/10.1109/TBME.2021.3091113 . (PMID: 10.1109/TBME.2021.309111334156934)
Armstrong, A. K., J. D. Zampi, L. M. Itu, and L. N. Benson. Use of 3D rotational angiography to perform computational fluid dynamics and virtual interventions in aortic coarctation. Catheter. Cardiovasc. Interv. 95:294–299, 2020. https://doi.org/10.1002/ccd.28507 . (PMID: 10.1002/ccd.2850731609061)
Aslan, S., X. Liu, Q. Wu, et al. Virtual planning and simulation of coarctation repair in hypoplastic aortic arches: is fixing the coarctation alone enough? In: Bioinformatics, pp. 138–143, 2022.
Backer, C. L., C. Mavroudis, E. A. Zias, et al. Repair of coarctation with resection and extended end-to-end anastomosis. Ann. Thorac. Surg. 66:1365–1370, 1998. https://doi.org/10.1016/S0003-4975(98)00671-7 . (PMID: 10.1016/S0003-4975(98)00671-79800834)
Lopez, L., S. Colan, M. Stylianou, et al. Relationship of echocardiographic z scores adjusted for body surface area to age, sex, race, and ethnicity: the pediatric heart network normal echocardiogram database. Circ. Cardiovasc. Imaging. 10:e006979, 2017. https://doi.org/10.1161/CIRCIMAGING.117.006979 . (PMID: 10.1161/CIRCIMAGING.117.006979291382325812349)
Kaiser, T., C. J. Kellenberger, M. Albisetti, et al. Normal values for aortic diameters in children and adolescents—assessment in vivo by contrast-enhanced CMR-angiography. J. Cardiovasc. Magn. Reson. 10:56, 2008. https://doi.org/10.1186/1532-429X-10-56 . (PMID: 10.1186/1532-429X-10-56190614952615773)
Aslan, S., Y.-H. Loke, P. Mass, et al. Design and simulation of patient-specific tissue-engineered bifurcated right ventricle-pulmonary artery grafts using computational fluid dynamics. In: 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE). pp. 1012–1018, 2019.
Itu, L., D. Neumann, V. Mihalef, et al. Non-invasive assessment of patient-specific aortic haemodynamics from four-dimensional flow MRI data. Interface Focus. 8:20170006, 2017. https://doi.org/10.1098/rsfs.2017.0006 . (PMID: 10.1098/rsfs.2017.0006292853435740219)
Aslan, S., P. Mass, Y.-H. Loke, et al. Non-invasive prediction of peak systolic pressure drop across coarctation of aorta using computational fluid dynamics. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020:2295–2298, 2020. https://doi.org/10.1109/EMBC44109.2020.9176461 . (PMID: 10.1109/EMBC44109.2020.9176461330184667878067)
Karmonik, C., A. Brown, K. Debus, et al. CFD challenge: predicting patient-specific hemodynamics at rest and stress through an aortic coarctation. In: Statistical atlases and computational models of the heart. Imaging and modelling challenges, edited by O. Camara, T. Mansi, M. Pop, et al. Berlin: Springer, 2014, pp. 94–101. (PMID: 10.1007/978-3-642-54268-8_11)
Dux-Santoy, L., A. Guala, J. Sotelo, et al. Low and oscillatory wall shear stress is not related to aortic dilation in patients with bicuspid aortic valve. Arterioscler. Thromb. Vasc. Biol. 40:e10–e20, 2020. https://doi.org/10.1161/ATVBAHA.119.313636 . (PMID: 10.1161/ATVBAHA.119.31363631801375)
Boumpouli, M., E. L. Sauvage, C. Capelli, et al. Characterization of flow dynamics in the pulmonary bifurcation of patients with repaired tetralogy of fallot: a computational approach. Front. Cardiovasc. Med. 8:703717, 2021. (PMID: 10.3389/fcvm.2021.703717346607118514754)
Hathcock, J. J. Flow effects on coagulation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 26:1729–1737, 2006. https://doi.org/10.1161/01.ATV.0000229658.76797.30 . (PMID: 10.1161/01.ATV.0000229658.76797.3016741150)
Wang, H., D. Balzani, V. Vedula, et al. On the potential self-amplification of aneurysms due to tissue degradation and blood flow revealed from FSI simulations. Front. Physiol.12:785780, 2021. https://doi.org/10.3389/fphys.2021.785780 . (PMID: 10.3389/fphys.2021.785780349558938709128)
Peters, B., P. Ewert, and F. Berger. The role of stents in the treatment of congenital heart disease: current status and future perspectives. Ann. Pediatr. Cardiol. 2:3–23, 2009. https://doi.org/10.4103/0974-2069.52802 . (PMID: 10.4103/0974-2069.52802203002652840765)
Bürk, J., P. Blanke, Z. Stankovic, et al. Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J. Cardiovasc. Magn. Reson. 14:84, 2012. https://doi.org/10.1186/1532-429X-14-84 . (PMID: 10.1186/1532-429X-14-84232371873534249)
Rafieianzab, D., M. A. Abazari, M. Soltani, and M. Alimohammadi. The effect of coarctation degrees on wall shear stress indices. Sci. Rep. 11:12757, 2021. https://doi.org/10.1038/s41598-021-92104-3 . (PMID: 10.1038/s41598-021-92104-3)
Kwon, S., J. Feinstein, R. Dholakia, and J. LaDisa. Quantification of local hemodynamic alterations caused by virtual implantation of three commercially available stents for the treatment of aortic coarctation. Pediatr. Cardiol. 2013. https://doi.org/10.1007/s00246-013-0845-7 . (PMID: 10.1007/s00246-013-0845-7242590133959287)
Callaghan, F. M., and S. M. Grieve. Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population. Am. J. Physiol. Heart Circ. Physiol. 315:H1174–H1181, 2018. https://doi.org/10.1152/ajpheart.00017.2018 . (PMID: 10.1152/ajpheart.00017.201830028202)
Miyazaki, S., K. Itatani, T. Furusawa, et al. Validation of numerical simulation methods in aortic arch using 4D Flow MRI. Heart Vessels. 32:1032–1044, 2017. https://doi.org/10.1007/s00380-017-0979-2 . (PMID: 10.1007/s00380-017-0979-228444501)
Arzani, A., and S. C. Shadden. Characterizations and correlations of wall shear stress in aneurysmal flow. J. Biomech. Eng. 2016. https://doi.org/10.1115/1.4032056 . (PMID: 10.1115/1.403205626592536)
Dolan, J. M., J. Kolega, and H. Meng. High wall shear stress and spatial gradients in vascular pathology: a review. Ann. Biomed. Eng. 41:1411–1427, 2013. https://doi.org/10.1007/s10439-012-0695-0 . (PMID: 10.1007/s10439-012-0695-023229281)
Lopes, D., H. Puga, J. C. Teixeira, and S. F. Teixeira. Influence of arterial mechanical properties on carotid blood flow: comparison of CFD and FSI studies. Int. J. Mech. Sci. 160:209–218, 2019. https://doi.org/10.1016/j.ijmecsci.2019.06.029 . (PMID: 10.1016/j.ijmecsci.2019.06.029)
Beckmann, E., and A. S. Jassar. Coarctation repair—redo challenges in the adults: what to do? J. Vis. Surg. 4:76, 2018. https://doi.org/10.21037/jovs.2018.04.07 . (PMID: 10.21037/jovs.2018.04.07297807225945897)
Hong, J. C., J. S. Coselli, and O. Preventza. The dos and don’ts of open and endovascular thoracoabdominal aortic aneurysm repair. Innovations. 15:513–520, 2020. https://doi.org/10.1177/1556984520967304 . (PMID: 10.1177/155698452096730433124924)
Uzzaman, M. M., N. E. Khan, B. Davies, et al. Long-term outcome of interrupted arch repair with direct anastomosis and homograft augmentation patch. Ann. Thorac. Surg. 105:1819–1826, 2018. https://doi.org/10.1016/j.athoracsur.2018.01.035 . (PMID: 10.1016/j.athoracsur.2018.01.03529452118)
معلومات مُعتمدة: R01HL143468 United States GF NIH HHS; NIH R33HD090671 United States GF NIH HHS; R21HD090671 United States GF NIH HHS
فهرسة مساهمة: Keywords: Aorta repair; Coarctation; Computational fluid dynamics; Surgical planning; Transverse arch hypoplasia; Virtual graft design
تواريخ الأحداث: Date Created: 20231120 Date Completed: 20240523 Latest Revision: 20240523
رمز التحديث: 20240524
DOI: 10.1007/s13239-023-00701-2
PMID: 37985613
قاعدة البيانات: MEDLINE
الوصف
تدمد:1869-4098
DOI:10.1007/s13239-023-00701-2