دورية أكاديمية

Impact of Cross-Limb Stent-Graft Configuration on Hemodynamics in Abdominal Aortic Aneurysm Interventional Therapy.

التفاصيل البيبلوغرافية
العنوان: Impact of Cross-Limb Stent-Graft Configuration on Hemodynamics in Abdominal Aortic Aneurysm Interventional Therapy.
المؤلفون: Xie Y; Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315020, China., Zhu Y; Department of Vascular Surgery, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China., Shi Y; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China., Zhao Y; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China., Zhang H; Department of Vascular Surgery, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China., Li F; College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, China. lifen01@tyut.edu.cn., Song H; College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan, 030024, China., Chen L; College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China., Guo W; Department of Vascular Surgery, First Medical Center of Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. guoweiplagh@sina.com.
المصدر: Cardiovascular engineering and technology [Cardiovasc Eng Technol] 2024 Apr; Vol. 15 (2), pp. 137-146. Date of Electronic Publication: 2023 Nov 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 101531846 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-4098 (Electronic) Linking ISSN: 1869408X NLM ISO Abbreviation: Cardiovasc Eng Technol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Springer
مواضيع طبية MeSH: Aortic Aneurysm, Abdominal*/surgery , Aortic Aneurysm, Abdominal*/physiopathology , Aortic Aneurysm, Abdominal*/diagnostic imaging , Stents* , Endovascular Procedures*/instrumentation , Hemodynamics* , Models, Cardiovascular* , Prosthesis Design* , Blood Vessel Prosthesis Implantation*/instrumentation , Blood Vessel Prosthesis* , Aorta, Abdominal*/physiopathology , Aorta, Abdominal*/surgery , Aorta, Abdominal*/diagnostic imaging , Computed Tomography Angiography* , Stress, Mechanical* , Patient-Specific Modeling*, Humans ; Regional Blood Flow ; Aortography ; Blood Flow Velocity ; Numerical Analysis, Computer-Assisted ; Treatment Outcome
مستخلص: Purpose: The cross-limb (CL) technique is a commonly used endovascular treatment for addressing unfavorable anatomical features in patients with abdominal aortic aneurysm (AAA). The configuration of CL stent-graft plays a critical role in determining the postoperative hemodynamic properties and physiological behaviors, which ultimately impact the efficacy and safety of endovascular AAA treatment. This study aims to investigate the relationship between hemodynamics and CL stent-graft configuration from a hemodynamic perspective.
Methods: Five distinct geometric models of cross-limb (CL) stent-graft configurations were constructed by optimizing the real clinical computed tomography angiography (CTA) data. These models varied in main body lengths and cross angles and were used to perform numerical simulations to analyze various hemodynamic parameters. Flow pattern, distribution of wall shear stress (WSS)-related parameters, localized normalized helicity (LNH), pressure drop, and the displacement force of all models were examined in this paper.
Results: In patient-specific cases, helical flow and WSS increase with the main body. However, it also generated secondary flow in localized areas, leading to increased oscillation in the WSS direction. Notably, increasing the stent graft's main body length or decreasing the cross angle reduced the displacement force exerted on the stent-graft. Reducing the cross angle did not significantly alter the hemodynamic characteristics.
Conclusion: In the clinical practice of CL deployment, it is crucial to carefully consider the stent-graft configuration and the patient specific to achieve optimal postoperative outcomes. This study provides valuable insights for guiding stent selection and treatment planning in patients with abdominal aortic aneurysm undergoing CL techniques, from a hemodynamic perspective.
(© 2023. The Author(s) under exclusive licence to Biomedical Engineering Society.)
References: Yue, J., Y. Zhao, J. Wang, Y. Fan, and T. Zheng. Comparison of stent displacement and displacement force after endovascular aneurysm repair with cross-limb or parallel-limb stent. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 39:645–650, 2022. https://doi.org/10.7507/1001-5515.202107038 . (PMID: 10.7507/1001-5515.20210703836008327)
Wang, J., J. Zhao, Y. Ma, B. Huang, Y. Yang, D. Yuan, C. Weng, and T. Wang. Mid term outcomes of crossed limb vs. standard limb configuration in endovascular abdominal aortic aneurysm repair: a propensity score analysis. Eur. J. Vasc. Endovasc. Surg. 61:579–588, 2021. https://doi.org/10.1016/j.ejvs.2021.01.018 . (PMID: 10.1016/j.ejvs.2021.01.01833642139)
Ashraf, F., T. Ambreen, C. W. Park, and D.-I. Kim. Comparative evaluation of ballet-type and conventional stent graft configurations for endovascular aneurysm repair: a CFD analysis. Clin. Hemorheol. Microcirc. 78:1–27, 2021. https://doi.org/10.3233/CH-200996 . (PMID: 10.3233/CH-200996334597008293652)
Dattani, N., J. Wild, D. Sidloff, G. Fishwick, M. Bown, E. Choke, and R. Sayers. Outcomes following limb crossing in endovascular aneurysm repairs. Vasc. Endovasc. Surg. 49:52–57, 2015. https://doi.org/10.1177/1538574415587512 . (PMID: 10.1177/1538574415587512)
Yagihashi, K., H. Nishimaki, Y. Ogawa, K. Chiba, K. Murakami, D. Ro, H. Ono, Y. Sakurai, T. Miyairi, and Y. Nakajima. Early and mid-term results of endovascular aortic repair using a crossed-limb technique for patients with severely splayed iliac angulation. Ann. Vasc. Dis. 11:91–95, 2018. https://doi.org/10.3400/avd.oa.16-00135 . (PMID: 10.3400/avd.oa.16-00135296821135882353)
Saha, P., J. Hughes, A. S. Patel, T. Donati, M. Sallam, S. D. Patel, R. E. Bell, K. Katsanos, B. Modarai, and H. A. Zayed. Medium-term outcomes following endovascular repair of infrarenal abdominal aortic aneurysms with an unfavourable proximal neck. Cardiovasc. Interv. Radiol. 38:840–845, 2015. https://doi.org/10.1007/s00270-014-1038-3 . (PMID: 10.1007/s00270-014-1038-3)
Georgiadis, G. S., E. I. Georgakarakos, G. A. Antoniou, G. Trellopoulos, A. Christos, E. S. Nikolopoulos, D. Charalampidis, N. G. Schoretsanitis, and M. K. Lazarides. Clinical outcomes after crossed-limb vs. conventional endograft configuration in endovascular AAA repair. J. Endovasc. Ther. 20:853–862, 2013. https://doi.org/10.1583/13-4286MR.1 . (PMID: 10.1583/13-4286MR.124325704)
Rödel, S. G. J., R. H. Geelkerken, R. J. Prescott, H. J. Florek, P. Kasprzak, and J. Brunkwall. The Anaconda TM AAA stent graft system: 2-year clinical and technical results of a multicentre clinical evaluation. Eur. J. Vasc. Endovasc. Surg. 38:732–740, 2009. https://doi.org/10.1016/j.ejvs.2009.08.007 . (PMID: 10.1016/j.ejvs.2009.08.00719775918)
Qiao, Y., L. Mao, Y. Ding, T. Zhu, K. Luo, and J. Fan. Fluid-structure interaction: Insights into biomechanical implications of endograft after thoracic endovascular aortic repair. Comput. Biol. Med.138:104882, 2021. https://doi.org/10.1016/j.compbiomed.2021.104882 . (PMID: 10.1016/j.compbiomed.2021.10488234600328)
Hirschhorn, M., V. Tchantchaleishvili, R. Stevens, J. Rossano, and A. Throckmorton. Fluid–structure interaction modeling in cardiovascular medicine—a systematic review 2017–2019. Med. Eng. Phys. 78:1–13, 2020. https://doi.org/10.1016/j.medengphy.2020.01.008 . (PMID: 10.1016/j.medengphy.2020.01.00832081559)
Amirbekian, S., R. C. Long, M. A. Consolini, J. Suo, N. J. Willett, S. W. Fielden, D. P. Giddens, W. R. Taylor, and J. N. Oshinski. In vivo assessment of blood flow patterns in abdominal aorta of mice with MRI: implications for AAA localization. Am. J. Physiol. Heart Circ. Physiol. 297:H1290–H1295, 2009. https://doi.org/10.1152/ajpheart.00889.2008 . (PMID: 10.1152/ajpheart.00889.2008196841822879376)
Harrison, S. C., A. J. Winterbottom, P. A. Coughlin, P. D. Hayes, and J. R. Boyle. Editor’s choice—mid-term migration and device failure following endovascular aneurysm sealing with the Nellix stent graft system—a single centre experience. Eur. J. Vasc. Endovasc. Surg. 56:342–348, 2018. https://doi.org/10.1016/j.ejvs.2018.06.031 . (PMID: 10.1016/j.ejvs.2018.06.03130190039)
Georgakarakos, E., A. Xenakis, C. Manopoulos, G. S. Georgiadis, S. Tsangaris, and M. Lazarides. Geometric factors affecting the displacement forces in an aortic endograft with crossed limbs: a computational study. J. Endovasc. Ther. 20:191–199, 2013. https://doi.org/10.1583/1545-1550-20.2.191 . (PMID: 10.1583/1545-1550-20.2.19123581761)
Liu, M., A. Sun, and X. Deng. Numerical and experimental investigation of the hemodynamic performance of bifurcated stent grafts with various torsion angles. Sci. Rep. 8:12625, 2018. https://doi.org/10.1038/s41598-018-31015-2 . (PMID: 10.1038/s41598-018-31015-2301355736105657)
Georgakarakos, E., A. Xenakis, and G. S. Georgiadis. Estimating the hemodynamic influence of variable main body-to-iliac limb length ratios in aortic endografts. Int. Angiol. 37:41–45, 2018. https://doi.org/10.23736/S0392-9590.17.03883-4 . (PMID: 10.23736/S0392-9590.17.03883-429072047)
Kandail, H., M. Hamady, and X. Y. Xu. Patient-specific analysis of displacement forces acting on fenestrated stent grafts for endovascular aneurysm repair. J. Biomech. 47:3546–3554, 2014. https://doi.org/10.1016/j.jbiomech.2014.08.011 . (PMID: 10.1016/j.jbiomech.2014.08.01125267572)
Georgakarakos, E., C. Argyriou, N. Schoretsanitis, C. V. Ioannou, N. Kontopodis, R. Morgan, and D. Tsetis. Geometrical factors influencing the hemodynamic behavior of the AAA stent grafts: essentials for the clinician. Cardiovasc. Interv. Radiol. 37:1420–1429, 2014. https://doi.org/10.1007/s00270-014-0927-9 . (PMID: 10.1007/s00270-014-0927-9)
Zhan, F., Y. Fan, and X. Deng. Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: its implication in the design of small-caliber arterial grafts. Thromb. Res. 125:413–418, 2010. https://doi.org/10.1016/j.thromres.2009.02.011 . (PMID: 10.1016/j.thromres.2009.02.01119304314)
Stefanov, F., T. McGloughlin, and L. Morris. A computational assessment of the hemodynamic effects of crossed and non-crossed bifurcated stent-graft devices for the treatment of abdominal aortic aneurysms. Med. Eng. Phys. 38:1458–1473, 2016. https://doi.org/10.1016/j.medengphy.2016.09.011 . (PMID: 10.1016/j.medengphy.2016.09.01127773830)
Liu, M., A. Sun, and X. Deng. Hemodynamic performance within crossed stent grafts: computational and experimental study on the effect of cross position and angle. Biomed. Eng. Online. 17:85, 2018. https://doi.org/10.1186/s12938-018-0517-1 . (PMID: 10.1186/s12938-018-0517-1299212816009958)
Perinajova, R., J. F. Juffermans, J. J. M. Westenberg, R. L. F. van der Palen, P. J. van den Boogaard, H. J. Lamb, and S. Kenjeres. Geometrically induced wall shear stress variability in CFD-MRI coupled simulations of blood flow in the thoracic aortas. Comput. Biol. Med.133:104385, 2021. https://doi.org/10.1016/j.compbiomed.2021.104385 . (PMID: 10.1016/j.compbiomed.2021.10438533894502)
Pinho, N., L. C. Sousa, C. F. Castro, C. C. Antonio, M. Carvalho, W. Ferreira, R. Ladeiras-Lopes, N. D. Ferreira, P. Braga, N. Bettencourt, and S. I. S. Pinto. The impact of the right coronary artery geometric parameters on hemodynamic performance. Cardiovasc. Eng. Technol. 10:257–270, 2019. https://doi.org/10.1007/s13239-019-00403-8 . (PMID: 10.1007/s13239-019-00403-830725435)
Campinho, P., A. Vilfan, and J. Vermot. Blood flow forces in shaping the vascular system: a focus on endothelial cell behavior. Front. Physiol. 2020. https://doi.org/10.3389/fphys.2020.00552 . Accessed April 7, 2023. (PMID: 10.3389/fphys.2020.00552325818427291788)
Krüger-Genge, A., A. Blocki, R.-P. Franke, and F. Jung. Vascular endothelial cell biology: an update. Int. J. Mol. Sci. 20:4411, 2019. https://doi.org/10.3390/ijms20184411 . (PMID: 10.3390/ijms20184411315003136769656)
Courtial, E.-J., L. Fanton, M. Orkisz, P. C. Douek, L. Huet, and R. Fulchiron. Hyper-viscoelastic behavior of healthy abdominal aorta. IRBM. 37:158–164, 2016. https://doi.org/10.1016/j.irbm.2016.03.007 . (PMID: 10.1016/j.irbm.2016.03.007)
Shek, T. L. T., L. W. Tse, A. Nabovati, and C. H. Amon. Computational fluid dynamics evaluation of the cross-limb stent graft configuration for endovascular aneurysm repair. J. Biomech. Eng. 2012. https://doi.org/10.1115/1.4007950 . (PMID: 10.1115/1.400795023363204)
De Nisco, G., A. Hoogendoorn, C. Chiastra, D. Gallo, A. M. Kok, U. Morbiducci, and J. J. Wentzel. The impact of helical flow on coronary atherosclerotic plaque development. Atherosclerosis. 300:39–46, 2020. https://doi.org/10.1016/j.atherosclerosis.2020.01.027 . (PMID: 10.1016/j.atherosclerosis.2020.01.02732085872)
Liu, X., A. Sun, Y. Fan, and X. Deng. Physiological significance of helical flow in the arterial system and its potential clinical applications. Ann. Biomed. Eng. 43:3–15, 2015. https://doi.org/10.1007/s10439-014-1097-2 . (PMID: 10.1007/s10439-014-1097-225169424)
De Nisco, G., A. M. Kok, C. Chiastra, D. Gallo, A. Hoogendoorn, F. Migliavacca, J. J. Wentzel, and U. Morbiducci. The atheroprotective nature of helical flow in coronary arteries. Ann. Biomed. Eng. 47:425–438, 2019. https://doi.org/10.1007/s10439-018-02169-x . (PMID: 10.1007/s10439-018-02169-x30488307)
Avgerinos, E. D., I. Dalainas, J. Kakisis, K. Moulakakis, T. Giannakopoulos, and C. D. Liapis. Endograft accommodation on the aortic bifurcation: an overview of anatomical fixation and implications for long-term stent-graft stability. J. Endovasc. Ther. 18:462–470, 2011. https://doi.org/10.1583/11-3411.1 . (PMID: 10.1583/11-3411.121861731)
Qiu, Y., D. Yuan, Y. Wang, J. Wen, and T. Zheng. Hemodynamic investigation of a patient-specific abdominal aortic aneurysm with iliac artery tortuosity. Comput. Methods Biomech. Biomed. Eng. 21:824–833, 2018. https://doi.org/10.1080/10255842.2018.1522531 . (PMID: 10.1080/10255842.2018.1522531)
Heidari, A., S. Rahmani, C. Pop, B. Saed, A. Mahpour, M. Navidbakhsh, and M. Alizadeh. Three-dimensional computational modeling of an extra-descending aortic assist device using fluid-structure interaction. IRBM. 42:35–47, 2021. https://doi.org/10.1016/j.irbm.2020.11.003 . (PMID: 10.1016/j.irbm.2020.11.003)
Meng, H., V. M. Tutino, J. Xiang, and A. Siddiqui. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. Am. J. Neuroradiol. 35:1254–1262, 2014. https://doi.org/10.3174/ajnr.A3558 . (PMID: 10.3174/ajnr.A3558235988387966576)
Malek, A. M. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282:2035, 1999. https://doi.org/10.1001/jama.282.21.2035 . (PMID: 10.1001/jama.282.21.203510591386)
Li, F., Y. Zhu, H. Song, H. Zhang, L. Chen, and W. Guo. Analysis of postoperative remodeling characteristics after modular inner branched stent-graft treatment of aortic arch pathologies using computational fluid dynamics. Bioengineering. 10:164, 2023. https://doi.org/10.3390/bioengineering10020164 . (PMID: 10.3390/bioengineering10020164368296589952632)
Liffman, K., M. M. Lawrence-Brown, J. B. Semmens, A. Bui, M. Rudman, and D. E. Hartley. Analytical modeling and numerical simulation of forces in an endoluminal graft. J. Endovasc. Ther. 8:358–371, 2001. https://doi.org/10.1583/1545-1550(2001)008%3c0358:AMANSO%3e2.0.CO;2 . (PMID: 10.1583/1545-1550(2001)008<0358:AMANSO>2.0.CO;211552728)
Veerapen, R., A. Dorandeu, I. Serre, J.-P. Berthet, C. H. Marty-Ane, H. Mary, and P. Alric. Improvement in proximal aortic endograft fixation: an experimental study using different stent-grafts in human cadaveric aortas. J. Endovasc. Ther. 10:1101–1109, 2003. https://doi.org/10.1177/152660280301000613 . (PMID: 10.1177/15266028030100061314723578)
معلومات مُعتمدة: CJ-HBIO202103 Foundation of Institute of Human Biomechanics; 12002231 National Natural Science Foundation of China; 7212095 Natural Science Foundation of Beijing Municipality; 2021J240 Ningbo Natural Science Foundation
فهرسة مساهمة: Keywords: Cross-limb configuration; Endovascular; Flow pattern; Hemodynamic; Wall shear stress
تواريخ الأحداث: Date Created: 20231120 Date Completed: 20240523 Latest Revision: 20240523
رمز التحديث: 20240524
DOI: 10.1007/s13239-023-00702-1
PMID: 37985614
قاعدة البيانات: MEDLINE
الوصف
تدمد:1869-4098
DOI:10.1007/s13239-023-00702-1