دورية أكاديمية

Coupling capillary electrophoresis with mass spectrometry for the analysis of oxidized phospholipids in human high-density lipoproteins.

التفاصيل البيبلوغرافية
العنوان: Coupling capillary electrophoresis with mass spectrometry for the analysis of oxidized phospholipids in human high-density lipoproteins.
المؤلفون: Chen CJ; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.; Department of Medical Research, Proteomics Core Laboratory, China Medical University Hospital, Taichung, Taiwan., Chang CT; Department of Medicine, China Medical University Hospital, Taichung, Taiwan.; College of Medicine, China Medical University, Taichung, Taiwan., Lin ZR; Department of Chemistry, National Changhua University of Education, Changhua, Taiwan., Chiu WC; Department of Chemistry, National Changhua University of Education, Changhua, Taiwan., Liu JY; Department of Chemistry, National Changhua University of Education, Changhua, Taiwan., Ye ZC; Department of Chemistry, National Changhua University of Education, Changhua, Taiwan., Wang CJ; Department of Chemistry, National Changhua University of Education, Changhua, Taiwan., Shieh YT; Department of Chemistry, National Changhua University of Education, Changhua, Taiwan., Liu MY; Department of Chemistry, National Changhua University of Education, Changhua, Taiwan.
المصدر: Electrophoresis [Electrophoresis] 2024 Feb; Vol. 45 (3-4), pp. 333-345. Date of Electronic Publication: 2023 Nov 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 8204476 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2683 (Electronic) Linking ISSN: 01730835 NLM ISO Abbreviation: Electrophoresis Subsets: MEDLINE
أسماء مطبوعة: Publication: : Weinheim : Wiley-VCH
Original Publication: [Weinheim, Germany] : Verlag Chemie, [1980-
مواضيع طبية MeSH: Phospholipids* , Lipoproteins, HDL*, Humans ; Cells, Cultured ; Mass Spectrometry ; Electrophoresis, Capillary
مستخلص: The oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (ox-PAPC) products in human high-density lipoproteins (HDLs) were investigated by low-flow capillary electrophoresis-mass spectrometry (low-flow CE-MS). To accelerate the optimization, native PAPC (n-PAPC) standard was first analyzed by a commercial CE instrument with a photodiode array detector. The optimal separation buffer contained 60% (v/v) acetonitrile, 40% (v/v) methanol, 20 mM ammonium acetate, 0.5% (v/v) formic acid, and 0.1% (v/v) water. The selected separation voltage and capillary temperature were 20 kV and 23°C. The optimal CE separation buffer was then used for the low-flow CE-MS analysis. The selected MS conditions contained heated capillary temperature (250°C), capillary voltage (10 V), and injection time (1 s). No sheath gas was used for MS. The linear range for n-PAPC was 2.5-100.0 µg/mL. The coefficient of determination (R 2 ) was 0.9918. The concentration limit of detection was 1.52 µg/mL, and the concentration limit of quantitation was 4.60 µg/mL. The optimal low-flow CE-MS method showed good repeatability and sensitivity. The ox-PAPC products in human HDLs were determined based on the in vitro ox-PAPC products of n-PAPC standard. Twenty-one ox-PAPC products have been analyzed in human HDLs. Uremic patients showed significantly higher levels of 15 ox-PAPC products than healthy subjects.
(© 2023 Wiley-VCH GmbH.)
References: Wills MR. Uremic toxins, and their effect on intermediary metabolism. Clin Chem. 1985;31(1):5-13.
Meguid El Nahas A, Bello AK. Chronic kidney disease: the global challenge. Lancet. 2005;365(9456):331-340.
Hillege HL, Fidler V, Diercks GF, van gilst WH, de Zeeuw D, van Veldhuisen DJ, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106(14):1777-1782.
Levey AS, Eknoyan G. Cardiovascular disease in chronic renal disease. Nephrol Dial Transplant. 1999;14(4):828-833.
Terabe S, Otsuka K, Ando T. Band broadening in electrokinetic chromatography with micellar solutions and open-tubular capillaries. Anal Chem. 1989;61(3):251-260.
Otsuka K, Terabe S. Micellar electrokinetic chromatography. Bull Chem Soc Jpn. 1998;9(3):2465-2481.
Janicki K, Solski J, Janicka L, Kimak E, Bednarek-Skublewska A, Stettner S, et al. Lipid and apolipoproteins (ApoAI, ApoB, Apo CIII, ApoE) disturbance in hemodialysis (HD) and renal transplant (Tx) patients. Ann Univ Mariae Curie Sklodowska Med. 2004;59(1):459-466.
Kes P, Reiner Z, Brunetta B. Lipoprotein disorders in chronic kidney failure, nephrotic syndrome and dialysis. Lijec Vjesn. 2002;124(11-22):372-377.
Vecino A, Teruel JL, Navarro JL, Cesar JM. Plasma phospholipids and platelet function in uremic patients. Am J Nephrol. 1996;16(5):409-411.
Stübiger G, Aldover-Macasaet E, Bicker W, Sobal G, Willfort-Ehringer A, Pock K, et al. Targeted profiling of atherogenic phospholipids in human plasma and lipoproteins of hyperlipidemic patients using MALDI-QIT-TOF-MS/MS. Atherosclerosis. 2012;224(1):177-186.
Berliner JA, Gharavi NM. Endothelial cell regulation by phospholipid goxidation products. Free Radical Biol Med. 2008;45(2):119-123.
Springstead JR, Gugiu BG, Lee S, Cha S, Watson AD, Berliner JA. Evidence for the importance of OxPAPC interaction with cysteines in regulating endothelial cell function. J Lipid Res. 2012;53(7):1304-1315.
Wenk MR. Lipidomics: new tools and applications. Cell. 2010;143(6):888-895.
Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4(7):594-610.
Wang J, Wang C, Han X. Tutorial on lipidomics. Anal Chim Acta. 2019;1061:28-41.
Birukova AA, Starosta V, Tian X, Higginbotham K, K l, Berliner JA, et al. Fragmented oxidation products define barrier disruptive endothelial cell response to OxPAPC. Transl Res. 2013;16(6):495-504.
Raith K, Wolf R, Wagner J, Neubert RHH. Separation of phospholipids by nonaqueous capillary electrophoresis with electrospray ionisation mass spectrometry. J Chromatogr A. 1998;802(1-3):185-188.
Guo BY, Wen B, Shan SQ, Zhang SZ, Lin JM. Separation and determination of phospholipids in plant seeds by nonaqueous capillary electrophoresis. J Chromatogr A. 2005;1074(1-2):205-213.
Nalesso A, Viel G, Cecchetto G, Frison G, Ferrara SD. Analysis of the alcohol biomarker phosphatidylethanol by NACE with on-line ESI-MS. Electrophoresis. 2010;31(7):1227-1233.
Varga A, Nilsson S. Nonaqueous capillary electrophoresis for analysis of the ethanol consumption biomarker phosphatidylethanol. Electrophoresis. 2008;29(8):1667-1671.
Otieno AC, Quainoo EW, Mwongela SM. Metal cations for the determination of fluorescent phosphoinositides by capillary electrophoresis. J Sep Sci. 2008;31(22):3894-3901.
Gao F, Zhang Z, Fu X, Li X, Wang T, Liu H. Analysis of phospholipids by NACE with on-line ESI-MS. Electrophoresis. 2007;28(9):1418-1425.
Chen YL, Xu Y. Determination of lysophosphatidic acids by capillary electrophoresis with indirect ultraviolet detection. J Chromatogr B. 2001;753(2):355-363.
Haddadian E, Shamsi SA, Schaeper JP, Danielson ND. Capillary electrophoresis of phospholipids with indirect photometric detection. J Chromatogr Sci. 1998;36(8):395-400.
Lucangioli S, Rodriguez V, Carducci CN. Capillary electrophoretic method for quality control of phospholipid products. Boll Chim Farm. 1999;138(1):7-11.
Sedláková I, Vávrová J, Tosner J, Hanousek L. Lysophosphatidic acid: an ovarian cancer marker. Eur J Gynaecol Oncol. 2008;29(5):511-514.
Gao F, Dong J, Li W, Wang T, Liao J, Liao Y, et al. Separation of phospholipids by capillary zone electrophoresis with indirect ultraviolet detection. J Chromatogr A. 2006;1130(2):259-264.
Qi L, Danielson ND, Dai Q, Lee RM. Capillary electrophoresis of cardiolipin with on-line dye interaction and spectrophotometric detection. Electrophoresis. 2003;24(10):1680-1686.
Fuller KM, Duffy CF, Arriaga EA. Determination of the cardiolipin content of individual mitochondria by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis. 2002;23(11):1571-1576.
Hu S, Zhang L, Dovichi NJ. Characterization of the interaction between phospholipid and protein by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr A. 2001;924(1-2):369-375.
Rammouz G, Usta J, Ribeiro SJ, Messaddeq Y, Couderc F, Poinsot V. Analysis of sphingosine 1-phosphate by capillary electrophoresis coupled to laser-induced fluorescence detection: use of a transparent fused-silica capillary. J Capill Electrophor Microchip Technol. 2007;10(1-2):25-31.
Lee KJ, Mwongela SM, Kottegoda S, Borland L, Nelson AR, Sims CE, et al. Determination of sphingosine kinase activity for cellular signaling studies. Anal Chem. 2008;80(5):1620-1627.
Mwongela SM, Lee K, Sims CE, Allbritton NL. Separation of fluorescent phosphatidyl inositol phosphates by CE. Electrophoresis. 2007;28(8):1235-1242.
Foulds LM, Boysen RI, Crane M, Yang Y, Muir JA, Smith AI, et al. Molecular identification of lyso-glycerophosphocholines as endogenous immunosuppressives in bovine and rat gonadal fluids. Biol Reprod. 2008;79(3):525-536.
Zhang L, Hu S, Cook L, Dovichi NJ. Analysis of aminophospholipid molecular species by methyl-β-cyclodextrin modified micellar electrokinetic capillary chromatography with laser-induced fluorescence detection. Electrophoresis. 2002;23(17):3071-3077.
Choi S, Lee YS, Na DS, Yoo YS. Determination of enzymatic activity and properties of secretory phospholipase A2 by capillary electrophoresis. J Chromatogr A. 1999;853(1-2):285-293.
Szücs R, Verleysen K, Duchateau GSMJE, Sandra P, Vandeginste BGM. Analysis of phospholipids in lecithins comparison between micellar electrokinetic chromatography and high-performance liquid chromatography. J Chromatogr A. 1996;738(1):25-29.
Reis A, Domingues P, Domingues MRM. Structural motifs in primary oxidation products of palmitoyl-arachidonoyl-phosphatidylcholines by LC-MS/MS. J Mass Spectrom. 2013;48(11):1207-1216.
Reis A, Domingues P, Ferrer-Correia AJV, Domingues MRM. Fragmentation study of short-chain products derived from oxidation of diacylphosphatidylcholines by electrospray tandem mass spectrometry: identification of novel short-chain products. Rapid Commun Mass Spectrom. 2004;18(23):2849-2858.
Reis A, Domingues P, Ferrer-Correia AJV, Domingues MRM. Tandem mass spectrometry of intact oxidation products of diacylphosphatidylcholines: evidence for the occurrence of the oxidation of the phosphocholine head and differentiation of isomers. J Mass Spectrom. 2004;39(12):1513-1522.
Reis A, Domingues MRM, Amado FML, Ferrer-Correia AJV, Domingues P. Separation of peroxidation products of diacyl-phosphatidylcholines by reversed-phase liquid chromatography-mass spectrometry. Biomed Chromatogr. 2005;19(2):129-137.
Reis A, Domingues P, Ferrer-Correia AJV, Domingues MRM. Identification of free radicals of glycerophosphatidylcholines containing ω-6 fatty acids using spin trapping coupled with tandem mass spectrometry. Free Radical Res. 2007;41(4):432-443.
Reis A, Domingues MRM, Amado FML, Ferrer-Correia AJ, Domingues P. Radical peroxidation of palmitoyl-lineloyl-glycerophosphocholine liposomes: Identification of long-chain oxidised products by liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2007;855(2):186-199.
Subbanagounder G, Watson AD, Berliner JA. Bioactive products of phospholipid oxidation: isolation, identification, measurement and activities. Free Radical Biol Med. 2000;28(12):1751-1761.
Poinsot Y, Ta HY, Meang VO, Perquis L, Gavard P, Pipy B, et al. A digest of capillary electrophoretic methods applied to lipid analyzes. Electrophoresis. 2019;40(1):190-211.
Jang R, Kim KH, Zaidi SA, Cheong WJ, Moon MH. Analysis of phospholipids using an open-tubular capillary column with a monolithic layer of molecularly imprinted polymer in capillary electrochromatography-electrospray ionization-tandem mass spectrometry. Electrophoresis. 2011;32(16):2167-2173.
Ho YL, Chiu JH, Wu CY, Liu MY. Separation and determination of in vitro oxidized phospholipids by capillary zone electrophoresis. Anal Biochem. 2007;367(2):210-218.
Wu CY, Peng YN, Chiu JH, Ho YL, Chong CP, Yang YL, et al. Characterization of in vitro modified human high-density lipoprotein particles and phospholipids by capillary zone electrophoresis and LC ESI-MS. J Chromatogr B. 2009;877(29):3495-3505.
Chong CP, Lin TY, Chang CL, Yang YL, Tsai MH, Yu YS, et al. Micellar electrokinetic chromatography profiles of human high-density lipoprotein phospholipids. Electrophoresis. 2011;32(10):1241-1251.
Chang CT, Chang IT, Hsia MH, Wang CC, Chen CJ, Zou HB, et al. Analysis of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine products in uremic patients by LC-ESI/MS. Separations. 2022;9(8):192-206.
Chang CT, Chiu WC, Lin ZR, Shieh YT, Chang IT, Hsia MH, et al. Determination of oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine products in human very low-density lipoproteins by nonaqueous low-flow capillary electrophoresis-mass spectrometry. J Chromatogr A. 2023;1687:463694.
Chen YR, Tseng MC, Chang YZ, Her GR. A low-flow CE/electrospray ionization MS interface for capillary zone electrophoresis, large-volume sample stacking, and micellar electrokinetic chromatography. Anal Chem. 2003;75(3):503-508.
Buchberger W, Gstöttenmayr D, Himmelsbach M. Determination of cinchona alkaloids by non-aqueous CE with MS detection. Electrophoresis. 2010;31(7):1208-1213.
Sturm S, Schinnerl J, Greger H, Stuppner H. Nonaqueous capillary electrophoresis-electrospray ionization-ion trap-mass spectrometry analysis of pyrrolo- and pyrido[1,2-a]azepine alkaloids in Stemona. Electrophoresis. 2008;29(10):2079-2087.
Ganzera M, Krüger A, Wink M. Determination of quinolizidine alkaloids in different Lupinus species by NACE using UV and MS detection. J Pharm Biomed Anal. 2010;53(5):1231-1235.
Liu CC, Zhang J, Dovichi NJ. A sheath-flow nanospray interface for capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom. 2005;19(2):187-192.
Anurukvorakun O, Buchberger W, Himmelsbach M, Klampel CW, Suntornsuk L. A sensitive non-aqueous capillary electrophoresis-mass spectrometric method for multiresidue analyses of β-agonists in pork. Biomed Chromatogr. 2009;24(6):588-599.
Geiser L, Veuthey JL. Nonaqueous capillary electrophoresis in pharmaceutical analysis. Electrophoresis. 2007;28(1-2):45-57.
معلومات مُعتمدة: 110-2113-M-018-002 National Science and Technology Council (NSTC), Taiwan; 112-2113-M-018-006 National Science and Technology Council (NSTC), Taiwan; DMR-109-026 China Medical University Hospital; DMR-111-038 China Medical University Hospital
فهرسة مساهمة: Keywords: CE-MS; high-density lipoprotein; oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; uremia
المشرفين على المادة: 0 (Phospholipids)
0 (Lipoproteins, HDL)
تواريخ الأحداث: Date Created: 20231121 Date Completed: 20240214 Latest Revision: 20240214
رمز التحديث: 20240214
DOI: 10.1002/elps.202300139
PMID: 37985935
قاعدة البيانات: MEDLINE
الوصف
تدمد:1522-2683
DOI:10.1002/elps.202300139