دورية أكاديمية

Long-term recruitment of peripheral immune cells to brain scars after a neonatal insult.

التفاصيل البيبلوغرافية
العنوان: Long-term recruitment of peripheral immune cells to brain scars after a neonatal insult.
المؤلفون: Bolini L; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Campos RMP; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Spiess DA; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Lima-Rosa FL; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Dantas DP; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Conde L; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Mendez-Otero R; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Vale AM; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil., Pimentel-Coelho PM; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
المصدر: Glia [Glia] 2024 Mar; Vol. 72 (3), pp. 546-567. Date of Electronic Publication: 2023 Nov 21.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8806785 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1098-1136 (Electronic) Linking ISSN: 08941491 NLM ISO Abbreviation: Glia Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: New York : Alan R. Liss, Inc., c1988-
مواضيع طبية MeSH: Cicatrix*/pathology , Hypoxia-Ischemia, Brain*/pathology, Adult ; Animals ; Humans ; Mice ; Brain/pathology ; Macrophages
مستخلص: Although brain scars in adults have been extensively studied, there is less data available regarding scar formation during the neonatal period, and the involvement of peripheral immune cells in this process remains unexplored in neonates. Using a murine model of neonatal hypoxic-ischemic encephalopathy (HIE) and confocal microscopy, we characterized the scarring process and examined the recruitment of peripheral immune cells to cortical and hippocampal scars for up to 1 year post-insult. Regional differences in scar formation were observed, including the presence of reticular fibrotic networks in the cortex and perivascular fibrosis in the hippocampus. We identified chemokines with chronically elevated levels in both regions and demonstrated, through a parabiosis-based strategy, the recruitment of lymphocytes, neutrophils, and monocyte-derived macrophages to the scars several weeks after the neonatal insult. After 1 year, however, neutrophils and lymphocytes were absent from the scars. Our data indicate that peripheral immune cells are transient components of HIE-induced brain scars, opening up new possibilities for late therapeutic interventions.
(© 2023 Wiley Periodicals LLC.)
References: Acton, S. E., Onder, L., Novkovic, M., Martinez, V. G., & Ludewig, B. (2021). Communication, construction, and fluid control: Lymphoid organ fibroblastic reticular cell and conduit networks. Trends in Immunology, 42(9), 782-794. https://doi.org/10.1016/j.it.2021.07.003.
A-Gonzalez, N., Quintana, J. A., García-Silva, S., Mazariegos, M., González de la Aleja, A., Nicolás-Ávila, J. A., Walter, W., Adrover, J. M., Crainiciuc, G., Kuchroo, V. K., Rothlin, C. V., Peinado, H., Castrillo, A., Ricote, M., & Hidalgo, A. (2017). Phagocytosis imprints heterogeneity in tissue-resident macrophages. Journal of Experimental Medicine, 214(5), 1281-1296. https://doi.org/10.1084/jem.20161375.
Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W., & Rossi, F. M. V. (2007). Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neuroscience, 10(12), 1538-1543. https://doi.org/10.1038/nn2014.
Al Mamun, A., Yu, H., Romana, S., & Liu, F. (2018). Inflammatory responses are sex specific in chronic hypoxic-ischemic encephalopathy. Cell Transplantation, 27(9), 1328-1339. https://doi.org/10.1177/0963689718766362.
Allaoui, R., Bergenfelz, C., Mohlin, S., Hagerling, C., Salari, K., Werb, Z., Anderson, R. L., Ethier, S. P., Jirström, K., Påhlman, S., Bexell, D., Tahin, B., Johansson, M. E., Larsson, C., & Leandersson, K. (2016). Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nature Communications, 7(1), 13050. https://doi.org/10.1038/ncomms13050.
Altamentova, S., Rumajogee, P., Hong, J., Beldick, S. R., Park, S. J., Yee, A., & Fehlings, M. G. (2020). Methylprednisolone reduces persistent post-ischemic inflammation in a rat hypoxia-ischemia model of perinatal stroke. Translational Stroke Research, 11(5), 1117-1136. https://doi.org/10.1007/s12975-020-00792-2.
Baba, N., Wang, F., Iizuka, M., Shen, Y., Yamashita, T., Takaishi, K., Tsuru, E., Matsushima, S., Miyamura, M., Fujieda, M., Tsuda, M., Sagara, Y., & Maeda, N. (2019). Induction of regional chemokine expression in response to human umbilical cord blood cell infusion in the neonatal mouse ischemia-reperfusion brain injury model. PLoS One, 14(9), e0221111. https://doi.org/10.1371/journal.pone.0221111.
Bellver-Landete, V., Bretheau, F., Mailhot, B., Vallières, N., Lessard, M., Janelle, M.-E., Vernoux, N., Tremblay, M. È., Fuehrmann, T., Shoichet, M. S., & Lacroix, S. (2019). Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nature Communications, 10(1), 518. https://doi.org/10.1038/s41467-019-08446-0.
Capucetti, A., Albano, F., & Bonecchi, R. (2020). Multiple roles for chemokines in neutrophil biology. Frontiers in Immunology, 11, 1259.
Castellano, J. M., Palner, M., Li, S.-B., Jr Freeman, G. M., Nguyen, A., Shen, B., Stan, T., Mosher, K. I., Chin, F. T., de Lecea, L., Luo, J., & Wyss-Coray, T. (2016). In vivo assessment of behavioral recovery and circulatory exchange in the peritoneal parabiosis model. Scientific Reports, 6(1), 29015. https://doi.org/10.1038/srep29015.
Chen, H.-R., Chen, C.-W., Kuo, Y.-M., Chen, B., Kuan, I. S., Huang, H., Lee, J., Anthony, N., Kuan, C. Y., & Sun, Y.-Y. (2022). Monocytes promote acute neuroinflammation and become pathological microglia in neonatal hypoxic-ischemic brain injury. Theranostics, 12(2), 512-529. https://doi.org/10.7150/thno.64033.
Chio, J. C. T., Punjani, N., Hejrati, N., Zavvarian, M.-M., Hong, J., & Fehlings, M. G. (2021). Extracellular matrix and oxidative stress following traumatic spinal cord injury: Physiological and pathophysiological roles and opportunities for therapeutic intervention. Antioxidants & Redox Signaling, 37(1-3), 184-207. https://doi.org/10.1089/ars.2021.0120.
Cui, L.-Y., Chu, S.-F., & Chen, N.-H. (2020). The role of chemokines and chemokine receptors in multiple sclerosis. International Immunopharmacology, 83, 106314. https://doi.org/10.1016/j.intimp.2020.106314.
Cupovic, J., onder, L., Gil-Cruz, C., Weiler, E., Caviezel-Firner, S., Perez-Shibayama, C., Rülicke, T., Bechmann, I., & Ludewig, B. (2016). Central nervous system stromal cells control local CD8+ T cell responses during virus-induced neuroinflammation. Immunity, 44(3), 622-633. https://doi.org/10.1016/j.immuni.2015.12.022.
Dammann, O. (2007). Persistent neuro-inflammation in cerebral palsy: A therapeutic window of opportunity? Acta Paediatrica, 96(1), 6-7. https://doi.org/10.1111/j.1651-2227.2007.00097.x.
Dias, D. O., Kalkitsas, J., Kelahmetoglu, Y., Estrada, C. P., Tatarishvili, J., Holl, D., Jansson, L., Banitalebi, S., Amiry-Moghaddam, M., Ernst, A., Huttner, H. B., Kokaia, Z., Lindvall, O., Brundin, L., Frisén, J., & Göritz, C. (2021). Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nature Communications, 12(1), 5501. https://doi.org/10.1038/s41467-021-25585-5.
Donega, V., Nijboer, C. H., van Tilborg, G., Dijkhuizen, R. M., Kavelaars, A., & Heijnen, C. J. (2014). Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury. Experimental Neurology, 261, 53-64. https://doi.org/10.1016/j.expneurol.2014.06.009.
Dorrier, C. E., Aran, D., Haenelt, E. A., Sheehy, R. N., Hoi, K. K., Pintarić, L., Chen, Y., Lizama, C. O., Cautivo, K. M., Weiner, G. A., Popko, B., Fancy, S. P. J., Arnold, T. D., & Daneman, R. (2021). CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nature Neuroscience, 24(2), 234-244. https://doi.org/10.1038/s41593-020-00770-9.
Doyle, K. P., Quach, L. N., Solé, M., Axtell, R. C., Nguyen, T. V., Soler-Llavina, G. J., Jurado, S., Han, J., Steinman, L., Longo, F. M., Schneider, J. A., Malenka, R. C., & Buckwalter, M. S. (2015). B-lymphocyte-mediated delayed cognitive impairment following stroke. Journal of Neuroscience, 35(5), 2133-2145. https://doi.org/10.1523/jneurosci.4098-14.2015.
Fehlberg, C. R., & Lee, J. K. (2022). Fibrosis in the central nervous system: From the meninges to the vasculature. Cell and Tissue Research, 387(3), 351-360. https://doi.org/10.1007/s00441-021-03491-y.
Fleiss, B., & Gressens, P. (2012). Tertiary mechanisms of brain damage: A new hope for treatment of cerebral palsy? Lancet Neurology, 11(6), 556-566. https://doi.org/10.1016/s1474-4422(12)70058-3.
Frisén, J., Haegerstrand, A., Risling, M., Fried, K., Johansson, C. B., Hammarberg, H., Elde, R., Hökfelt, T., & Cullheim, S. (1995). Spinal axons in central nervous system scar tissue are closely related to laminin-immunoreactive astrocytes. Neuroscience, 65(1), 293-304. https://doi.org/10.1016/0306-4522(94)00467-J.
Gama Sosa, M. A., de Gasperi, R., Perez Garcia, G. S., Perez, G. M., Searcy, C., Vargas, D., Spencer, A., Janssen, P. L., Tschiffely, A. E., McCarron, R., Ache, B., Manoharan, R., Janssen, W. G., Tappan, S. J., Hanson, R. W., Gandy, S., Hof, P. R., Ahlers, S. T., & Elder, G. A. (2019). Low-level blast exposure disrupts gliovascular and neurovascular connections and induces a chronic vascular pathology in rat brain. Acta Neuropathologica Communications, 7(1), 6. https://doi.org/10.1186/s40478-018-0647-5.
Garcia-Bonilla, L., Brea, D., Benakis, C., Lane, D. A., Murphy, M., Moore, J., Racchumi, G., Jiang, X., Iadecola, C., & Anrather, J. (2018). Endogenous protection from ischemic brain injury by preconditioned monocytes. The Journal of Neuroscience, 38(30), 6722-6736. https://doi.org/10.1523/JNEUROSCI.0324-18.2018.
GBD 2017 Child and Adolescent Health Collaborators. (2019). Diseases, injuries, and risk factors in child and adolescent health, 1990 to 2017: Findings from the global burden of diseases, injuries, and risk factors 2017 study. JAMA Pediatrics, 173(6), e190337. https://doi.org/10.1001/jamapediatrics.2019.0337.
Geddes, R., Vannucci, R. C., & Vannucci, S. J. (2001). Delayed cerebral atrophy following moderate hypoxia-ischemia in the immature rat. Developmental Neuroscience, 23(3), 180-185. https://doi.org/10.1159/000046140.
Heindl, S., Ricci, A., Carofiglio, O., Zhou, Q., Arzberger, T., Lenart, N., Franzmeier, N., Hortobagyi, T., Nelson, P. T., Stowe, A. M., Denes, A., Edbauer, D., & Liesz, A. (2021). Chronic T cell proliferation in brains after stroke could interfere with the efficacy of immunotherapies. Journal of Experimental Medicine, 218(8), e20202411. https://doi.org/10.1084/jem.20202411.
Herz, J., Bendix, I., & Felderhoff-Müser, U. (2022). Peripheral immune cells and perinatal brain injury: A double-edged sword? Pediatric Research, 91(2), 392-403. https://doi.org/10.1038/s41390-021-01818-7.
Herz, J., Köster, C., Crasmöller, M., Abberger, H., Hansen, W., Felderhoff-Müser, U., & Bendix, I. (2018). Peripheral T cell depletion by FTY720 exacerbates hypoxic-ischemic brain injury in neonatal mice. Frontiers in Immunology, 9, 1696.
Järlestedt, K., Rousset, C. I., Faiz, M., Wilhelmsson, U., Ståhlberg, A., Sourkova, H., Pekna, M., Mallard, C., Hagberg, H., & Pekny, M. (2010). Attenuation of reactive gliosis does not affect infarct volume in neonatal hypoxic-ischemic brain injury in mice. PLoS One, 5(4), e10397. https://doi.org/10.1371/journal.pone.0010397.
Kamran, P., Sereti, K. I., Zhao, P., Ali, S. R., Weissman, I. L., & Ardehali, R. (2013). Parabiosis in mice: A detailed protocol. Journal of Visualized Experiments, 80, 50556. https://doi.org/10.3791/50556.
Kim, J. V., Kang, S. S., Dustin, M. L., & McGavern, D. B. (2009). Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature, 457(7226), 191-195. https://doi.org/10.1038/nature07591.
Kowarik, M. C., Cepok, S., Sellner, J., Grummel, V., Weber, M. S., Korn, T., Berthele, A., & Hemmer, B. (2012). CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. Journal of Neuroinflammation, 9(1), 93. https://doi.org/10.1186/1742-2094-9-93.
Kunkel-Bagden, E., Dai, H.-N., & Bregman, B. S. (1992). Recovery of function after spinal cord hemisection in newborn and adult rats: Differential effects on reflex and locomotor function. Experimental Neurology, 116(1), 40-51. https://doi.org/10.1016/0014-4886(92)90174-O.
Lear, B. A., Lear, C. A., Davidson, J. O., Sae-Jiw, J., Lloyd, J. M., Gunn, A. J., & Bennet, L. (2021). Tertiary cystic white matter injury as a potential phenomenon after hypoxia-ischaemia in preterm f sheep. Brain Communications, 3(2), fcab024. https://doi.org/10.1093/braincomms/fcab024.
Lepore, F., D'Alessandro, G., Antonangeli, F., Santoro, A., Esposito, V., Limatola, C., & Trettel, F. (2018). CXCL16/CXCR6 Axis drives microglia/macrophages phenotype in physiological conditions and plays a crucial role in glioma. Frontiers in Immunology, 9, 2750.
Levison, S. W., Rocha-Ferreira, E., Kim, B. H., Hagberg, H., Fleiss, B., Gressens, P., & Dobrowolski, R. (2022). Mechanisms of tertiary neurodegeneration after neonatal hypoxic-ischemic brain damage. Pediatric Medicine, 5, 28. https://doi.org/10.21037/pm-20-104.
Li, Y., He, X., Kawaguchi, R., Zhang, Y., Wang, Q., Monavarfeshani, A., Yang, Z., Chen, B., Shi, Z., Meng, H., Zhou, S., Zhu, J., Jacobi, A., Swarup, V., Popovich, P. G., Geschwind, D. H., & He, Z. (2020). Microglia-organized scar-free spinal cord repair in neonatal mice. Nature, 587(7835), 613-618. https://doi.org/10.1038/s41586-020-2795-6.
Liu, K. K., & Dorovini-Zis, K. (2012). Differential regulation of CD4+ T cell adhesion to cerebral microvascular endothelium by the β-chemokines CCL2 and CCL3. International Jounal of Molecular Science, 13(12), 16119-16140.
Maurin, H., Chong, S.-A., Kraev, I., Davies, H., Kremer, A., Seymour, C. M., Lechat, B., Jaworski, T., Borghgraef, P., Devijver, H., Callewaert, G., Stewart, M. G., & van Leuven, F. (2014). Early structural and functional defects in synapses and myelinated axons in stratum lacunosum moleculare in two preclinical models for tauopathy. PLoS One, 9(2), e87605. https://doi.org/10.1371/journal.pone.0087605.
McIntyre, S., Nelson, K. B., Mulkey, S. B., Lechpammer, M., Molloy, E., & Badawi, N. (2021). Neonatal encephalopathy: Focus on epidemiology and underexplored aspects of etiology. Seminars in Fetal and Neonatal Medicine, 26(4), 101265. https://doi.org/10.1016/j.siny.2021.101265.
Milich, L. M., Ryan, C. B., & Lee, J. K. (2019). The origin, fate, and contribution of macrophages to spinal cord injury pathology. Acta Neuropathologica, 137(5), 785-797. https://doi.org/10.1007/s00401-019-01992-3.
Mohamud Yusuf, A., Hagemann, N., Ludewig, P., Gunzer, M., & Hermann, D. M. (2022). Roles of polymorphonuclear neutrophils in ischemic brain injury and post-ischemic brain remodeling. Frontiers in Immunology, 12, 825572.
Mülling, K., Fischer, A. J., Siakaeva, E., Richter, M., Bordbari, S., Spyra, I., Köster, C., Hermann, D. M., Gunzer, M., Felderhoff-Müser, U., Bendix, I., Jablonska, J., & Herz, J. (2021). Neutrophil dynamics, plasticity and function in acute neurodegeneration following neonatal hypoxia-ischemia. Brain, Behavior, and Immunity, 92, 234-244. https://doi.org/10.1016/j.bbi.2020.12.012.
Nazmi, A., Albertsson, A. M., Rocha-Ferreira, E., Zhang, X., Vontell, R., Zelco, A., Rutherford, M., Zhu, C., Nilsson, G., Mallard, C., Hagberg, H., Lai, J. C. Y., Leavenworth, J. W., & Wang, X. (2018). Lymphocytes contribute to the pathophysiology of neonatal brain injury. Frontiers in Neurology, 9, 159. https://doi.org/10.3389/fneur.2018.00159.
Noor, S., & Wilson, E. H. (2012). Role of C-C chemokine receptor type 7 and its ligands during neuroinflammation. Journal of Neuroinflammation, 9(1), 77. https://doi.org/10.1186/1742-2094-9-77.
Ogawa, Y., Tanaka, E., Sato, Y., & Tsuji, M. (2021). Brain damage caused by neonatal hypoxia-ischemia and the effects of hypothermia in severe combined immunodeficient (SCID) mice. Experimental Neurology, 337, 113577. https://doi.org/10.1016/j.expneurol.2020.113577.
Paredes, B. D., Faccioli, L. A. P., Quintanilha, L. F., Asensi, K. D., do Valle, C. Z., Canary, P. C., Takiya, C. M., de Carvalho, A. C., & Goldenberg, R. C. D. S. (2012). Bone marrow progenitor cells do not contribute to liver fibrogenic cells. World Journal of Hepatology, 4(10), 274-283. https://doi.org/10.4254/wjh.v4.i10.274.
Peters, A., Pitcher, L. A., Sullivan, J. M., Mitsdoerffer, M., Acton, S. E., Franz, B., Wucherpfennig, K., Turley, S., Carroll, M. C., Sobel, R. A., Bettelli, E., & Kuchroo, V. K. (2011). Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity, 35(6), 986-996. https://doi.org/10.1016/j.immuni.2011.10.015.
Pikor, N. B., Astarita, J. L., Summers-Deluca, L., Galicia, G., Qu, J., Ward, L. A., Armstrong, S., Dominguez, C. X., Malhotra, D., Heiden, B., Kay, R., Castanov, V., Touil, H., Boon, L., O'Connor, P., Bar-Or, A., Prat, A., Ramaglia, V., Ludwin, S., … Gommerman, J. L. (2015). Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity, 43(6), 1160-1173. https://doi.org/10.1016/j.immuni.2015.11.010.
Pimentel-Coelho, P. M. (2023). Monocytes in neonatal stroke and hypoxic-ischemic encephalopathy: Pathophysiological mechanisms and therapeutic possibilities. Neuroprotection, 1(1), 20-33. https://doi.org/10.1002/nep3.22.
Rodriguez, S. L., Carver, C. M., Dosch, A. J., Huffman, D. M., Duke Boynton, F. D., Ayasoufi, K., & Schafer, M. J. (2022). An optimized mouse parabiosis protocol for investigation of aging and rejuvenative mechanisms. Frontiers in Aging, 3, 993658. https://doi.org/10.3389/fragi.2022.993658.
Rosen, S. F., Soung, A. L., Yang, W., Ai, S., Kanmogne, M., Davé, V. A., Artyomov, M., Magee, J. A., & Klein, R. S. (2022). Single-cell RNA transcriptome analysis of CNS immune cells reveals CXCL16/CXCR6 as maintenance factors for tissue-resident T cells that drive synapse elimination. Genome Medicine, 14(1), 108. https://doi.org/10.1186/s13073-022-01111-0.
Rosenzweig, N., Dvir-Szternfeld, R., Tsitsou-Kampeli, A., Keren-Shaul, H., Ben-Yehuda, H., Weill-Raynal, P., Cahalon, L., Kertser, A., Baruch, K., Amit, I., Weiner, A., & Schwartz, M. (2019). PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nature Communications, 10(1), 465. https://doi.org/10.1038/s41467-019-08352-5.
Schiavinato, A., Przyklenk, M., Kobbe, B., Paulsson, M., & Wagener, R. (2021). Collagen type VI is the antigen recognized by the ER-TR7 antibody. European Journal of Immunology, 51(9), 2345-2347. https://doi.org/10.1002/eji.202149263.
Schnell, S. A., Staines, W. A., & Wessendorf, M. W. (1999). Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. Journal of Histochemistry and Cytochemistry, 47(6), 719-730. https://doi.org/10.1177/002215549904700601.
Seehusen, F., al-Azreg, S. A., Raddatz, B. B., Haist, V., Puff, C., Spitzbarth, I., Ulrich, R., & Baumgärtner, W. (2016). Accumulation of extracellular matrix in advanced lesions of canine distemper demyelinating encephalitis. PLoS One, 11(7), e0159752. https://doi.org/10.1371/journal.pone.0159752.
Shankaran, S., Barnes, P. D., Hintz, S. R., Laptook, A. R., Zaterka-Baxter, K. M., McDonald, S. A., Ehrenkranz, R. A., Walsh, M. C., Tyson, J. E., Donovan, E. F., Goldberg, R. N., Bara, R., Das, A., Finer, N. N., Sanchez, P. J., Poindexter, B. B., Van Meurs, K. P., Carlo, W. A., Stoll, B. J., … Higgins, R. D. (2012). Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Archives of Disease in Childhood. Fetal and Neonatal Edition, 97(6), F398-F404. https://doi.org/10.1136/archdischild-2011-301524.
Sheldon, R. A., Windsor, C., & Ferriero, D. M. (2018). Strain-related differences in mouse neonatal hypoxia-ischemia. Developmental Neuroscience, 40(5-6), 490-496. https://doi.org/10.1159/000495880.
Shi, C., & Pamer, E. G. (2011). Monocyte recruitment during infection and inflammation. Nature Reviews. Immunology, 11(11), 762-774. https://doi.org/10.1038/nri3070.
Smith, P. L. P., Mottahedin, A., Svedin, P., Mohn, C.-J., Hagberg, H., Ek, J., & Mallard, C. (2018). Peripheral myeloid cells contribute to brain injury in male neonatal mice. Journal of Neuroinflammation, 15(1), 301. https://doi.org/10.1186/s12974-018-1344-9.
Sofroniew, M. V. (2018). Dissecting spinal cord regeneration. Nature, 557(7705), 343-350. https://doi.org/10.1038/s41586-018-0068-4.
Spiess, D. A., Campos, R. M. P., Conde, L., Didwischus, N., Boltze, J., Mendez-Otero, R., & Pimentel-Coelho, P. M. (2022). Subacute AMD3100 treatment is not efficient in neonatal hypoxic-ischemic rats. Stroke, 53(2), 586-594. https://doi.org/10.1161/STROKEAHA.120.033768.
Stubbe, T., Ebner, F., Richter, D., Engel, O. R., Klehmet, J., Royl, G., Meisel, A., Nitsch, R., Meisel, C., & Brandt, C. (2012). Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. Journal of Cerebral Blood Flow and Metabolism, 33(1), 37-47. https://doi.org/10.1038/jcbfm.2012.128.
Thayyil, S., Pant, S., Montaldo, P., Shukla, D., Oliveira, V., Ivain, P., Bassett, P., Swamy, R., Mendoza, J., Moreno-Morales, M., Lally, P. J., Benakappa, N., Bandiya, P., Shivarudhrappa, I., Somanna, J., Kantharajanna, U. B., Rajvanshi, A., Krishnappa, S., Joby, P. K., … HELIX Consortium. (2021). Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): A randomised controlled trial in India, Sri Lanka, and Bangladesh. The Lancet Global Health, 9(9), e1273-e1285. https://doi.org/10.1016/S2214-109X(21)00264-3.
Thierry, G. R., Kuka, M., De Giovanni, M., Mondor, I., Brouilly, N., Iannacone, M., & Bajénoff, M. (2018). The conduit system exports locally secreted IgM from lymph nodes. Journal of Experimental Medicine, 215(12), 2972-2983. https://doi.org/10.1084/jem.20180344.
Tran, A. P., Warren, P. M., & Silver, J. (2022). New insights into glial scar formation after spinal cord injury. Cell and Tissue Research, 387(3), 319-336. https://doi.org/10.1007/s00441-021-03477-w.
Umekawa, T., Osman, A. M., Han, W., Ikeda, T., & Blomgren, K. (2015). Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia. Glia, 63(12), 2220-2230. https://doi.org/10.1002/glia.22887.
Villeda, S. A., Luo, J., Mosher, K. I., Zou, B., Britschgi, M., Bieri, G., Stan, T. M., Fainberg, N., Ding, Z., Eggel, A., Lucin, K. M., Czirr, E., Park, J. S., Couillard-Després, S., Aigner, L., Li, G., Peskind, E. R., Kaye, J. A., Quinn, J. F., … Wyss-Coray, T. (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362), 90-94. https://doi.org/10.1038/nature10357.
Wang, Y., Ulland, T. K., Ulrich, J. D., Song, W., Tzaferis, J. A., Hole, J. T., Yuan, P., Mahan, T. E., Shi, Y., Gilfillan, S., Cella, M., Grutzendler, J., DeMattos, R., Cirrito, J. R., Holtzman, D. M., & Colonna, M. (2016). TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. Journal of Experimental Medicine, 213(5), 667-675. https://doi.org/10.1084/jem.20151948.
Wegiel, J., Kuchna, I., Wisniewski, T., de Leon, M., Reisberg, B., Pirttila, T., Kivimaki, T., & Lehtimaki, T. (2002). Vascular fibrosis and calcification in the hippocampus in aging, Alzheimer disease, and down syndrome. Acta Neuropathologica, 103(4), 333-343. https://doi.org/10.1007/s00401-001-0471-y.
Wilson, E. H., Harris, T. H., Mrass, P., John, B., Tait, E. D., Wu, G. F., Pepper, M., Wherry, E. J., Dzierzinski, F., Roos, D., Haydon, P. G., Laufer, T. M., Weninger, W., & Hunter, C. A. (2009). Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity, 30(2), 300-311. https://doi.org/10.1016/j.immuni.2008.12.013.
Winerdal, M., Winerdal, M. E., Kinn, J., Urmaliya, V., Winqvist, O., & Aden, U. (2012). Long lasting local and systemic inflammation after cerebral hypoxic ischemia in newborn mice. PLoS One, 7(5), e36422. https://doi.org/10.1371/journal.pone.0036422.
Winerdal, M., Winerdal, M. E., Wang, Y.-Q., Fredholm, B. B., Winqvist, O., & Ådén, U. (2016). Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury. Purinergic Signalling, 12(1), 89-101. https://doi.org/10.1007/s11302-015-9482-3.
Wisnowski, J. L., Wintermark, P., Bonifacio, S. L., Smyser, C. D., Barkovich, A. J., Edwards, A. D., de Vries, L. S., Inder, T. E., Chau, V., & Newborn Brain Society Guidelines and Publications Committee. (2021). Neuroimaging in the term newborn with neonatal encephalopathy. Seminars in Fetal and Neonatal Medicine, 26(5), 101304. https://doi.org/10.1016/j.siny.2021.101304.
Woehrl, B., Klein, M., Rupprecht, T. A., Schmetzer, H., Angele, B., Häcker, H., Häcker, G., Pfister, H. W., & Koedel, U. (2010). CXCL16 contributes to neutrophil recruitment to cerebrospinal fluid in pneumococcal meningitis. The Journal of Infectious Diseases, 202(9), 1389-1396. https://doi.org/10.1086/656532.
Wuttge, D. M., Zhou, X., Sheikine, Y., Wågsäter, D., Stemme, V., Hedin, U., Stemme, S., Hansson, G. K., & Sirsjö, A. (2004). CXCL16/SR-PSOX is an interferon-γ-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(4), 750-755. https://doi.org/10.1161/01.ATV.0000124102.11472.36.
Zhang, J., Hao, W., Zhang, J., Li, T., Ma, Y., Wang, Y., Li, X., Cui, W., & du, J. (2023). CXCL16 promotes Ly6Chigh monocyte infiltration and impairs heart function after acute myocardial infarction. The Journal of Immunology, 210(6), 820-831. https://doi.org/10.4049/jimmunol.2200249.
Zhou, X., Wahane, S., Friedl, M.-S., Kluge, M., Friedel, C. C., Avrampou, K., Zachariou, V., Guo, L., Zhang, B., He, X., Friedel, R. H., & Zou, H. (2020). Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via plexin-B2. Nature Neuroscience, 23(3), 337-350. https://doi.org/10.1038/s41593-020-0597-7.
معلومات مُعتمدة: 313757/2020-8 Conselho Nacional de Desenvolvimento Científico e Tecnológico; E-26/010.002160/2019 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; E-26/201.279/2021 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; E-26/203.227/2017 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; E-260003/001177/2020 Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
فهرسة مساهمة: Keywords: B cells; T cells; gliosis; monocyte-derived macrophages; neonatal brain injury
تواريخ الأحداث: Date Created: 20231121 Date Completed: 20240115 Latest Revision: 20240725
رمز التحديث: 20240726
DOI: 10.1002/glia.24490
PMID: 37987116
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-1136
DOI:10.1002/glia.24490