دورية أكاديمية

Ficin-copper hybrid nanoflowers with enhanced peroxidase-like activity for colorimetric detection of biothiols.

التفاصيل البيبلوغرافية
العنوان: Ficin-copper hybrid nanoflowers with enhanced peroxidase-like activity for colorimetric detection of biothiols.
المؤلفون: Dang TV; Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea., Kim JM; Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea., Kim MI; Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam, Gyeonggi, 13120, Republic of Korea. moonil@gachon.ac.kr.
المصدر: Mikrochimica acta [Mikrochim Acta] 2023 Nov 21; Vol. 190 (12), pp. 473. Date of Electronic Publication: 2023 Nov 21.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Austria NLM ID: 7808782 Publication Model: Electronic Cited Medium: Internet ISSN: 1436-5073 (Electronic) Linking ISSN: 00263672 NLM ISO Abbreviation: Mikrochim Acta Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Wien ; New York : Springer-Verlag.
مواضيع طبية MeSH: Copper* , Ficain*, Humans ; Colorimetry ; Hydrogen Peroxide ; Glutathione ; Cysteine ; Homocysteine ; Phosphates
مستخلص: The proteolytic enzyme ficin exhibits peroxidase-like activity but it is low and insufficient for real applications. Herein, we developed ficin-copper hybrid nanoflowers and demonstrated that they have significantly enhanced peroxidase-like activity of over 6-fold higher than that of free ficin, with one of the lowest K m and highest k cat values among all reported ficin-based peroxidase-like nanozymes. This was most likely caused by the synergistic catalysis of co-existing ficin and crystalline copper phosphate within nanoflower matrices having a large surface area. The nanoflowers were easily prepared by incubating ficin and copper sulfate at ambient temperature, causing coordination interactions between ficin's amine/amide moieties and copper ions, followed by concomitant anisotropic growth of petals composed of copper phosphate crystals with ficin. When compared to free ficin and natural horseradish peroxidase, the resulting nanoflowers' affinity toward H 2 O 2 was greatly increased, yielding K m values of half and one-tenth, respectively, as well as noticeably improved stability. The nanoflowers were then applied to colorimetric determination of biological thiols (biothiols), such as cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), based on their inhibition of nanoflowers' peroxidase-like activity, producing reduced color intensities as the concentration of biothiols increased. This strategy achieved highly sensitive colorimetric determinations of Cys, GSH, and Hcy after only 25-min incubation. Additionally, using this technique, biothiols in human serum were successfully determined with excellent precision, suggesting the potential application of this technology in clinical settings, particularly in point-of-care testing environments.
(© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
References: Lin J, Wang Q, Wang X, Zhu Y, Zhou X, Wei H (2020) Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst 145:3916–3921. (PMID: 10.1039/D0AN00451K)
Mishanina TV, Libiad M, Banerjee R (2015) Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nat Chem Biol 11:457–464. (PMID: 26083070481811310.1038/nchembio.1834)
Zhang S, Ong CN, Shen HM (2004) Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 208:143–153. (PMID: 1514267210.1016/j.canlet.2003.11.028)
Hu Q, Yu C, Xia X, Zeng F, Wu S (2016) A fluorescent probe for simultaneous discrimination of GSH and Cys/Hcy in human serum samples via distinctly-separated emissions with independent excitations. Biosens Bioelectron 81:341–348. (PMID: 2699160010.1016/j.bios.2016.03.011)
He L, Tao H, Koo S, Chen G, Sharma A, Chen Y, Lim IT, Cao QY, Kim JS (2018) Multifunctional fluorescent nanoprobe for sequential detections of Hg2+ ions and biothiols in live cells. ACS Appl Bio Mater 1:871–878. (PMID: 3499618010.1021/acsabm.8b00300)
Lee HY, Choi YP, Kim S, Yoon T, Gou Z, Lee S, Swamy KMK, Kim G, Lee JY, Shin I, Yoon J (2014) Selective homocysteine turn-on fluorescent probes and their bioimaging applications. Chem Commun 50:6967–6969. (PMID: 10.1039/c4cc00243a)
Liu J, Sun YQ, Zhang H, Huo Y, Shi Y, Guo W (2014) Simultaneous fluorescent imaging of Cys/Hcy and GSH from different emission channels. Chem Sci 5:3183–3188. (PMID: 10.1039/c4sc00838c)
Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155. (PMID: 12818476652224810.1016/S0753-3322(03)00043-X)
Patel BP, Rawal UM, Dave TK, Rawal RM, Shukla SN, Shah PM, Patel PS (2007) Lipid peroxidation, total antioxidant status, and total thiol levels predict overall survival in patients with oral squamous cell carcinoma. Integr Cancer Ther 6:365–372. (PMID: 1804888410.1177/1534735407309760)
Liu W, Chen J, Xu Z (2021) Fluorescent probes for biothiols based on metal complex. Coord Chem Rev 429:213638. (PMID: 10.1016/j.ccr.2020.213638)
Chen X, Zhou Y, Peng X, Yoon J (2010) Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev 39(6):2120–2135. (PMID: 2050280110.1039/b925092a)
Zhu J, Dhimitruka I, Pei D (2004) 5-(2-Aminoethyl) dithio-2-nitrobenzoate as a more base-stable alternative to Ellman's reagent. Org Lett 6(21):3809–3812. (PMID: 1546935510.1021/ol048404+)
Dai J, Ma C, Zhang P, Fu Y, Shen B (2020) Recent progress in the development of fluorescent probes for detection of biothiols. Dyes Pigments 177:108321. (PMID: 10.1016/j.dyepig.2020.108321)
Li ZJ, Zheng XJ, Zhang L, Liang RP, Li ZM, Qiu JD (2015) Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles. Biosens Bioelectron 68:668–674. (PMID: 2566051110.1016/j.bios.2015.01.062)
Mohammadi S, Khayatian G (2017) Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 185:27–34. (PMID: 2853184710.1016/j.saa.2017.05.034)
Li P, Lee SM, Kim HY, Kim S, Park S, Park KS, Park HG (2021) Colorimetric detection of individual biothiols by tailor made reactions with silver nanoprisms. Sci Rep 11:3937. (PMID: 33594153788687910.1038/s41598-021-83433-4)
Mostafa IM, Liu H, Hanif S, Gilani MRHS, Guan Y, Xu G (2022) Synthesis of a novel electrochemical probe for the sensitive and selective detection of biothiols and its clinical applications. Anal Chem 94:6853–6859. (PMID: 3547639510.1021/acs.analchem.2c00813)
Jin T, Li Y, Jing W, Li Y, Fan L, Li X (2020) Cobalt-based metal organic frameworks: a highly active oxidase-mimicking nanozyme for fluorescence “turn-on” assays of biothiol. Chem Commun 56:659–662. (PMID: 10.1039/C9CC06840F)
Duan W, Qiu Z, Cao S, Guo Q, Huang J, Xing J, Lu X, Zeng J (2022) Pd–Fe3O4 Janus nanozyme with rational design for ultrasensitive colorimetric detection of biothiols. Biosens Bioelectron 196:113724. (PMID: 3470026210.1016/j.bios.2021.113724)
Le XA, Le TN, Kim MI (2021) Dual-functional peroxidase-copper phosphate hybrid nanoflowers for sensitive detection of biological thiols. Int J Mol Sci 23:366. (PMID: 35008792874509110.3390/ijms23010366)
Bekhit AA, Hopkins DL, Geesink G, Bekhit AA, Franks P (2014) Exogenous proteases for meat tenderization. Crit Rev Food Sci Nutr 54:1012–1031. (PMID: 2449911910.1080/10408398.2011.623247)
Salam SMA, Kagawa KI, Matsubara T, Kawashiro K (2008) Protease-catalyzed dipeptide synthesis from N-protected amino acid carbamoylmethyl esters and free amino acids in frozen aqueous solutions. Enzym Microb Technol 43:537–543. (PMID: 10.1016/j.enzmictec.2008.09.003)
Yang Y, Shen D, Long Y, Xie Z, Zheng H (2017) Intrinsic peroxidase-like activity of ficin. Sci Rep 7:43141. (PMID: 28224979532048710.1038/srep43141)
Huang Z, Yang Y, Long Y, Zheng H (2018) A colorimetric method for cysteine determination based on the peroxidase-like activity of ficin. Anal Methods 10:2676–2680. (PMID: 10.1039/C8AY00707A)
Pan Y, Yang Y, Pang Y, Shi Y, Long Y, Zheng H (2018) Enhancing the peroxidase-like activity of ficin via heme binding and colorimetric detection for uric acid. Talanta 185:433–438. (PMID: 2975922410.1016/j.talanta.2018.04.005)
Zheng W, Shen D, Pan Y, Yi D, Long Y, Zheng H (2019) Enhancing the peroxidase-like activity of ficin by rational blocking thiol groups for colorimetric detection of biothiols. Talanta 204:833–839. (PMID: 3135737210.1016/j.talanta.2019.06.073)
Zheng W, Liu J, Yi D, Pan Y, Long Y, Zheng H (2020) Ficin encapsulated in mesoporous metal-organic frameworks with enhanced peroxidase-like activity and colorimetric detection of glucose. Spectrochim Acta A Mol Biomol Spectrosc 233:118195. (PMID: 3213550010.1016/j.saa.2020.118195)
Zhang M, Zhang Y, Yang C, Ma C, Tang J (2021) Enzyme-inorganic hybrid nanoflowers: classification, synthesis, functionalization and potential applications. Chem Eng J 415:129075. (PMID: 10.1016/j.cej.2021.129075)
Dadi S, Temur N, Gul OT, Yilmaz V, Ocsoy I (2023) In situ synthesis of horseradish peroxidase nanoflower@carbon nanotube hybrid nanobiocatalysts with greatly enhanced catalytic activity. Langmuir 39(13):4819–4828. (PMID: 369441671007781510.1021/acs.langmuir.3c00260)
Dadi S, Cardoso MH, Mandal AK, Franco OL, Ildiz N, Ocsoy I (2023) Natural molecule-incorporated magnetic organic-inorganic nanoflower: investigation of its dual fenton reaction-dependent enzyme-like catalytic activities with cyclic use. ChemistrySelect 8(13):e202300404. (PMID: 10.1002/slct.202300404)
Yilmoz SG, Demirbas A, Karaagac Z, Dadi S, Celik C, Yusufbeyoglu S, Ildiz N, Mandal AK, Cimen B, Ocsoy I (2022) Synthesis of taurine-Cu3(PO4)2 hybrid nanoflower and their peroxidase-mimic and antimicrobial properties. J Biotechnol 343:96–101. (PMID: 10.1016/j.jbiotec.2021.11.009)
Gul OT, Ocsoy I (2021) Co-enzymes based nanoflowers incorporated-magnetic carbon nanotubes: a new generation nanocatalyst for superior removal of cationic and anionic dyes with great repeated use. Environ Technol Innov 24:101992. (PMID: 10.1016/j.eti.2021.101992)
Gül OT, Ocsoy I (2021) Preparation of magnetic horseradish peroxidase-laccase nanoflower for rapid and efficient dye degradation with dual mechanism and cyclic use. Mater Lett 303:130501. (PMID: 10.1016/j.matlet.2021.130501)
Dadi S, Celik C, Ocsoy I (2020) Gallic acid nanoflower immobilized membrane with peroxidase-like activity for m-cresol detection. Sci Rep 10:16765. (PMID: 33028883754214910.1038/s41598-020-73778-7)
Celik C, Tasdemir D, Demirbas A, Katı A, Gul OT, Cimen B, Ocsoy I (2018) Formation of functional nanobiocatalysts with a novel and encouraging immobilization approach and their versatile bioanalytical applications. RSC Adv 8(45):25298–25303. (PMID: 35539799908272110.1039/C8RA03250E)
Dang TV, Kim MI (2023) Diversified component incorporated hybrid nanoflowers: a versatile material for biosensing and biomedical applications. Korean J Chem Eng 40:302–310. (PMID: 10.1007/s11814-022-1292-z)
Ge J, Lei J, Zare RN (2012) Protein–inorganic hybrid nanoflowers. Nat Nanotechnol 7:428–432. (PMID: 2265960910.1038/nnano.2012.80)
Jiang X, Sun C, Guo Y, Nie G, Xu L (2015) Peroxidase-like activity of apoferritin paired gold clusters for glucose detection. Biosens Bioelectron 64:165–170. (PMID: 2521810010.1016/j.bios.2014.08.078)
Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095. (PMID: 2033738810.1021/ac901071p)
Huang Y, Ran X, Lin Y, Ren J, Qu X (2015) Self-assembly of an organic–inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chem Commun 51:4386–4389. (PMID: 10.1039/C5CC00040H)
Jiang W, Wang X, Yang J, Han H, Li Q, Tang J (2018) Lipase-inorganic hybrid nanoflower constructed through biomimetic mineralization: a new support for biodiesel synthesis. J Colloid Interface Sci 514:102–107. (PMID: 2924782110.1016/j.jcis.2017.12.025)
Dang TV, Heo NS, Cho HJ, Lee SM, Song MY, Kim HJ, Kim MI (2021) Colorimetric determination of phenolic compounds using peroxidase mimics based on biomolecule-free hybrid nanoflowers consisting of graphitic carbon nitride and copper. Microchim Acta 188:293. (PMID: 10.1007/s00604-021-04937-4)
Gonzalez DH, Kuang XM, Scott JA, Rocha GO, Paulson SE (2018) Terephthalate probe for hydroxyl radicals: yield of 2-hydroxyterephthalic acid and transition metal interference. Anal Lett 51:2488–2497. (PMID: 10.1080/00032719.2018.1431246)
Shang C, Wang Q, Tan H, Lu S, Wang S, Zhang Q, Gu L, Li J, Wang E, Guo S (2022) Defective PtRuTe as nanozyme with selectively enhanced peroxidase-like activity. JACS Au 2:2453–2459. (PMID: 36465540970993610.1021/jacsau.2c00495)
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. (PMID: 1865437110.1038/nnano.2007.260)
Pan Y, Pang Y, Shi Y, Zheng W, Long Y, Huang Y, Zheng H (2019) One-pot synthesis of a composite consisting of the enzyme ficin and a zinc (II)-2-methylimidazole metal organic framework with enhanced peroxidase activity for colorimetric detection for glucose. Microchim Acta 186:1–8. (PMID: 10.1007/s00604-019-3331-y)
Li Z, Xia H, Li S, Pang J, Zhu W, Jiang Y (2017) In situ hybridization of enzymes and their metal–organic framework analogues with enhanced activity and stability by biomimetic mineralisation. Nanoscale 9:15298–15302. (PMID: 2899130310.1039/C7NR06315F)
Turell L, Radi R, Alvarez B (2013) The thiol pool in human plasma: the central contribution of albumin to redox processes. Free Radic Biol Med 65:244–253. (PMID: 23747983390971510.1016/j.freeradbiomed.2013.05.050)
Buyukaslan H, Gulacti U, Gokdemir MT, Giden R, Celik H, Erel O, Dorterler EM (2019) Serum thiol levels and thiol/disulphide homeostasis in gunshot injuries. Eur J Trauma Emerg Surg 45:167–174. (PMID: 2932726810.1007/s00068-017-0900-9)
فهرسة مساهمة: Keywords: Biothiols; Colorimetric detection; Ficin-copper hybrid nanoflowers; Nanozyme; Peroxidase mimic
المشرفين على المادة: 789U1901C5 (Copper)
EC 3.4.22.3 (Ficain)
BBX060AN9V (Hydrogen Peroxide)
GAN16C9B8O (Glutathione)
K848JZ4886 (Cysteine)
0LVT1QZ0BA (Homocysteine)
0 (Phosphates)
تواريخ الأحداث: Date Created: 20231121 Date Completed: 20231122 Latest Revision: 20231207
رمز التحديث: 20240628
DOI: 10.1007/s00604-023-06070-w
PMID: 37987844
قاعدة البيانات: MEDLINE
الوصف
تدمد:1436-5073
DOI:10.1007/s00604-023-06070-w