دورية أكاديمية

IL-10-induced STAT3/NF-κB crosstalk modulates pineal and extra-pineal melatonin synthesis.

التفاصيل البيبلوغرافية
العنوان: IL-10-induced STAT3/NF-κB crosstalk modulates pineal and extra-pineal melatonin synthesis.
المؤلفون: Córdoba-Moreno MO; Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil., Santos GC; Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil., Muxel SM; Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil., Dos Santos-Silva D; Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil., Quiles CL; Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil., Sousa KDS; Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil., Markus RP; Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil., Fernandes PACM; Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil.
المصدر: Journal of pineal research [J Pineal Res] 2024 Jan; Vol. 76 (1), pp. e12923. Date of Electronic Publication: 2023 Nov 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8504412 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-079X (Electronic) Linking ISSN: 07423098 NLM ISO Abbreviation: J Pineal Res Subsets: MEDLINE
أسماء مطبوعة: Publication: : Oxford : Wiley
Original Publication: New York : Liss, c1984-
مواضيع طبية MeSH: Pineal Gland*/metabolism , Melatonin*/pharmacology, Rats ; Animals ; NF-kappa B/metabolism ; Interleukin-10/metabolism ; Signal Transduction
مستخلص: Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.
(© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
References: Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev. 2003;55(2):325-395. doi:10.1124/pr.55.2.2.
Carrillo-Vico A, Lardone P, Álvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero J. Melatonin: buffering the immune system. Int J Mol Sci. 2013;14(4):8638-8683. doi:10.3390/ijms14048638.
Da Silveira Cruz-Machado S, Tamura EK, Carvalho-Sousa CE, et al. Daily corticosterone rhythm modulates pineal function through NFκB-related gene transcriptional program. Sci Rep. 2017;7(1):2091. doi:10.1038/s41598-017-02286-y.
Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol. 2018;175(16):3239-3250. doi:10.1111/bph.14083.
Markus RP, Ferreira ZS, Fernandes PACM, Cecon E. The immune-pineal axis: a shuttle between endocrine and paracrine melatonin sources. Neuroimmunomodulation. 2007;14(3-4):126-133. doi:10.1159/000110635.
Acuña-Castroviejo D, Escames G, Venegas C, et al. Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci. 2014;71(16):2997-3025. doi:10.1007/s00018-014-1579-2.
Pontes GN, Cardoso EC, Carneiro-Sampaio MMS, Markus RP. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes)-melatonin in human colostrum and colostrum phagocytes. J Pineal Res. 2006;41(2):136-141. doi:10.1111/j.1600-079X.2006.00345.x.
Pontes GN, Cardoso EC, Carneiro-Sampaio MMS, Markus RP. Pineal melatonin and the innate immune response: the TNF-α increase after cesarean section suppresses nocturnal melatonin production. J Pineal Res. 2007;43(4):365-371. doi:10.1111/j.1600-079X.2007.00487.x.
De Oliveira Tatsch-Dias M, Levandovski RM, Custódio de Souza IC, et al. The concept of the immune-pineal axis tested in patients undergoing an abdominal hysterectomy. Neuroimmunomodulation. 2013;20(4):205-212. doi:10.1159/000347160.
Lopes C, Markus MRP. Interaction between the adrenal and the pineal gland in chronic experimental inflammation induced by BCG in mice. Inflamm Res. 2001;50(1):6-11. doi:10.1007/s000110050717.
Tamura EK, Fernandes PA, Marçola M, Cruz-Machado SS, Markus RP. Long-lasting priming of endothelial cells by plasma melatonin levels. PLoS One. 2010;5(11):e13958. doi:10.1371/journal.pone.0013958.
Fernandes PA, Tamura EK, D'Argenio-Garcia L, et al. Dual effect of catecholamines and corticosterone crosstalk on pineal gland melatonin synthesis. Neuroendocrinology. 2016;104(2):126-134. doi:10.1159/000445189.
Carvalho-Sousa CE, Pereira EP, Kinker GS, et al. Immune-pineal axis protects rat lungs exposed to polluted air. J Pineal Res. 2020;68(3):e12636. doi:10.1111/jpi.12636.
Beriwal N, Namgyal T, Sangay P, Al Quraan AM. Role of immune-pineal axis in neurodegenerative diseases, unraveling novel hybrid dark hormone therapies. Heliyon. 2019;5(1):e01190. doi:10.1016/j.heliyon.2019.e01190.
Gurunathan S, Qasim M, Kang MH, Kim JH. Role and therapeutic potential of melatonin in various type of cancers. Onco Targets Ther. 2021;14:2019-2052. doi:10.2147/OTT.S298512.
Hardeland R. Neurobiology, pathophysiology, and treatment of melatonin deficiency and dysfunction. Scientific World Journal. 2012;2012:640389. doi:10.1100/2012/640389.
Cecon E, Fernandes PA, Pinato L, Ferreira ZS, Markus RP. Daily variation of constitutively activated nuclear factor kappa B (NFκB) in rat pineal gland. Chronobiol Int. 2010;27(1):52-67. doi:10.3109/07420521003661615.
Muxel SM, Laranjeira-Silva MF, Carvalho-Sousa CE, Floeter-Winter LM, Markus RP. The RelA/cRel nuclear factor-κB (NF-κB) dimer, crucial for inflammation resolution, mediates the transcription of the key enzyme in melatonin synthesis in RAW 264.7 macrophages. J Pineal Res. 2016;60:394-404. doi:10.1111/jpi.12321.
Markus R, Cecon E, Pires-Lapa M. Immune-pineal axis: nuclear factor κB (NF-KB) mediates the shift in the melatonin source from pinealocytes to immune competent cells. Int J Mol Sci. 2013;14:10979-10997. doi:10.3390/ijms140610979.
Muxel SM, Pires-Lapa MA, Monteiro AWA, et al. NF-κB drives the synthesis of melatonin in RAW 264.7 macrophages by inducing the transcription of the arylalkylamine-N-acetyltransferase (AA-NAT) gene. PLoS One. 2012;7(12):e52010. doi:10.1371/journal.pone.0052010.
Barbosa Lima LE, Muxel SM, Kinker GS, et al. STAT1-NFκB crosstalk triggered by interferon gamma regulates noradrenaline-induced pineal hormonal production. J Pineal Res. 2019;67(3):e12599. doi:10.1111/jpi.12599.
Ferreira ZS, Fernandes PACM, Duma D, Assreuy J, Avellar MCW, Markus RP. Corticosterone modulates noradrenaline-induced melatonin synthesis through inhibition of nuclear factor kappa B. J Pineal Res. 2005;38(3):182-188. doi:10.1111/j.1600-079X.2004.00191.x.
Lotufo CMC, Yamashita CE, Farsky SHP, Markus RP. Melatonin effect on endothelial cells reduces vascular permeability increase induced by leukotriene B4. Eur J Pharmacol. 2006;534(1-3):258-263. doi:10.1016/j.ejphar.2006.01.050.
Cardoso TC, Pompeu TE, Silva CLM. The P2Y1 receptor-mediated leukocyte adhesion to endothelial cells is inhibited by melatonin. Purinergic Signal. 2017;13(3):331-338. doi:10.1007/S11302-017-9565-4.
Pires-Lapa MA, Tamura EK, Salustiano EMA, Markus RP. Melatonin synthesis in human colostrum mononuclear cells enhances dectin-1-mediated phagocytosis by mononuclear cells. J Pineal Res. 2013;55(3):240-246. doi:10.1111/jpi.12066.
Córdoba-Moreno MO, de Souza ES, Quiles CL, et al. Rhythmic expression of the melatonergic biosynthetic pathway and its differential modulation in vitro by LPS and IL10 in bone marrow and spleen. Sci Rep. 2020;10(1):4799. doi:10.1038/s41598-020-61652-5.
Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21(1):11-19. doi:10.1016/j.cytogfr.2009.11.005.
Ferreira ZS, Cipolla-Neto J, Markus RP. Presence of P2-purinoceptors in the rat pineal gland. Br J Pharmacol. 1994;112(1):107-110. doi:10.1111/j.1476-5381.1994.tb13037.x.
Jensen LJ, Kuhn M, Stark M, et al. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37(suppl 1):D412-D416. doi:10.1093/nar/gkn760.
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605-D612. doi:10.1093/NAR/GKAA1074.
Fornes O, Castro-Mondragon JA, Khan A, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2019;48(D1):D87-D92. doi:10.1093/NAR/GKZ1001.
Molcan L. Time distributed data analysis by Cosinor. Online application. bioRxiv. 2019. doi:10.1101/805960.
Chattoraj A, Liu T, Zhang LS, Huang Z, Borjigin J. Melatonin formation in mammals: in vivo perspectives. Rev Endocr Metab Disord. 2009;10(4):237-243. doi:10.1007/s11154-009-9125-5.
Markus RP, Sousa KS, Da silveira cruz-Machado S, Fernandes PA, Ferreira ZS. Possible role of pineal and extra-pineal melatonin in surveillance, immunity, and first-line defense. Int J Mol Sci. 2021;22(22):12143. doi:10.3390/IJMS222212143.
Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233-247. doi:10.1038/nri.2017.1.
Carlini V, Noonan DM, Abdalalem E, et al. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front Immunol. 2023;14:1161067. doi:10.3389/fimmu.2023.1161067.
Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19(1):683-765. doi:10.1146/annurev.immunol.19.1.683.
Finbloom DS, Winestock KD. IL-10 induces the tyrosine phosphorylation of tyk2 and Jak1 and the differential assembly of STAT1 alpha and STAT3 complexes in human T cells and monocytes. J Immunol. 1995;155(31):1079-1090. doi:10.4049/jimmunol.155.3.1079.
Lee H, Herrmann A, Deng JH, et al. Persistently-activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell. 2009;15(4):283-293. doi:10.1016/J.CCR.2009.02.015.
Yu Z, Zhang W, Kone BC. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor κB. Biochem J. 2002;367(pt 1):97-105. doi:10.1042/BJ20020588.
Yoshida Y, Kumar A, Koyama Y, et al. Interleukin 1 activates STAT3/nuclear factor-κB cross-talk via a unique TRAF6- and p65-dependent mechanism. J Biol Chem. 2004;279(3):1768-1776. doi:10.1074/JBC.M311498200.
Battle T, Frank D. The role of STATs in apoptosis. Curr Mol Med. 2002;2(4):381-392. doi:10.2174/1566524023362456.
Driessler F, Venstrom K, Sabat R, Asadullah K, Schottelius AJ. Molecular mechanisms of interleukin-10-mediated inhibition of NF-κB activity: a role for p50. Clin Exp Immunol. 2004;135(1):64-73. doi:10.1111/J.1365-2249.2004.02342.X.
Schottelius AJG, Mayo MW, Sartor RB, Baldwin AS. Interleukin-10 signaling blocks inhibitor of κB kinase activity and nuclear factor κB DNA binding. J Biol Chem. 1999;274(45):31868-31874. doi:10.1074/jbc.274.45.31868.
Wang P, Wu P, Siegel MI, Egan RW, Billah MM. Interleukin (IL)-10 inhibits nuclear factor кB (NFкB) activation in human monocytes. J Biol Chem. 1995;270(16):9558-9563. doi:10.1074/jbc.270.16.9558.
Ehrlich LC, Hu S, Peterson PK, Chao CC. IL-10 down-regulates human microglial IL-8 by inhibition of NF-κB activation. Neuroreport. 1998;9(8):1723-1726. doi:10.1097/00001756-199806010-00010.
Rousset F, Garcia E, Defrance T, et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A. 1992;89(5):1890-1893. doi:10.1073/pnas.89.5.1890.
Lelievre E, Sarrouilhe D, Morel F, Preud'Homme JL, Wijdenes J, Lecron JC. Preincubation of human resting T cell clones with interleukin 10 strongly enhances their ability to produce cytokines after stimulation. Cytokine. 1998;10(11):831-840. doi:10.1006/cyto.1998.0371.
Groux H, Bigler M, de Vries JE, Roncarolo M-G. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. The Journal of Immunology. 1998;160(7):3188-3193. doi:10.4049/jimmunol.160.7.3188.
Shibata Y, Foster LA, Kurimoto M, et al. Immunoregulatory roles of IL-10 in innate immunity: IL-10 inhibits macrophage production of IFN-γ-Inducing factors but enhances NK cell production of IFN-γ. J Immunol. 1998;161(8):4283-4288. doi:10.4049/jimmunol.161.8.4283.
Hurme M, Henttinen T, Karppelin M, Varkila K, Matikainen S. Effect of interleukin-10 on NF-kB and AP-1 activities in interleukin-2 dependent CD8 T lymphoblasts. Immunol Lett. 1994;42(3):129-133. doi:10.1016/0165-2478(94)90075-2.
Golan K, Kumari A, Kollet O, et al. Daily onset of light and darkness differentially controls hematopoietic stem cell differentiation and maintenance. Cell Stem Cell. 2018;23(4):572-585.e7. doi:10.1016/j.stem.2018.08.002.
Drazen DL, Bilu D, Bilbo SD, Nelson RJ. Melatonin enhancement of splenocyte proliferation is attenuated by luzindole, a melatonin receptor antagonist. Am J Physiol Regul Integr Comp Physiol. 2001;280(5):49-55. doi:10.1152/AJPREGU.2001.280.5.R1476.
Carrillo-Vico A, Lardone PJ, Naji L, et al. Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: regulation of pro-/anti-inflammatory cytokine network, protection against oxidative damage and anti-apoptotic effects. J Pineal Res. 2005;39(4):400-408. doi:10.1111/j.1600-079X.2005.00265.x.
Ren W, Liu G, Chen S, et al. Melatonin signaling in T cells: functions and applications. J Pineal Res. 2017;62(3):e12394. doi:10.1111/jpi.12394.
Farez MF, Mascanfroni ID, Méndez-Huergo SP, et al. Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell. 2015;162:1338-1352. doi:10.1016/j.cell.2015.08.025.
Chen S-J, Huang S-H, Chen J-W, et al. Melatonin enhances interleukin-10 expression and suppresses chemotaxis to inhibit inflammation in situ and reduce the severity of experimental autoimmune encephalomyelitis. Int Immunopharmacol. 2016;31(06):169-177. doi:10.1016/j.intimp.2015.12.020.
Wu GC, Peng CK, Liao WI, Pao HP, Huang KL, Chu SJ. Melatonin receptor agonist protects against acute lung injury induced by ventilator through up-regulation of IL-10 production. Respir Res. 2020;21(1):65. doi:10.1186/s12931-020-1325-2.
Farez MF, Calandri IL, Correale J, Quintana FJ. Anti-inflammatory effects of melatonin in multiple sclerosis. BioEssays. 2016;38(10):1016-1026. doi:10.1002/bies.201600018.
Raghavendra V, Singh V, Kulkarni SK, Agrewala JN. Melatonin enhances Th2 cell mediated immune responses: lack of sensitivity to reversal by naltrexone or benzodiazepine receptor antagonists. Mol Cell Biochem. 2001;221(1-2):57-62. doi:10.1023/A:1010968611716.
Fernandes PACM, Cecon E, Markus RP, Ferreira ZS. Effect of TNF-αon the melatonin synthetic pathway in the rat pineal gland: basis for a ‘feedback’ of the immune response on circadian timing. J Pineal Res. 2006;41(4):344-350. doi:10.1111/j.1600-079X.2006.00373.x.
Fernandes PACM, Bothorel B, Clesse D, et al. Local corticosterone infusion enhances nocturnal pineal melatonin production in vivo. J Neuroendocrinol. 2009;21(2):90-97. doi:10.1111/j.1365-2826.2008.01817.x.
Gorby C, Sotolongo Bellón J, Wilmes S, et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci Signal. 2020;13(649):eabc0653. doi:10.1126/scisignal.abc0653.
Mundigler G, Delle-Karth G, Koreny M, et al. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med. 2002;30(3):536-540. doi:10.1097/00003246-200203000-00007.
Sertaridou EN, Chouvarda IG, Arvanitidis KI, et al. Melatonin and cortisol exhibit different circadian rhythm profiles during septic shock depending on timing of onset: a prospective observational study. Ann Intensive Care. 2018;8(1):118. doi:10.1186/s13613-018-0462-y.
Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27:669-684.
Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis. 2000;181:176-180. doi:10.1086/315214.
Fabri A, Kandara K, Coudereau R, et al. Characterization of circulating IL-10-producing cells in septic shock patients: a proof of concept study. Front Immunol. 2021;11:615009. doi:10.3389/fimmu.2020.615009.
Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-867. doi:10.1038/nature01322.
Zhao H, Wu L, Yan G, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021;6:263. doi:10.1038/s41392-021-00658-5.
Ni G, Zhang L, Yang X, et al. Targeting interleukin-10 signalling for cancer immunotherapy, a promising and complicated task. Hum Vaccines Immunother. 2020;16(10):2328-2332. doi:10.1080/21645515.2020.1717185.
Shen L, Li J, Liu Q, et al. Local blockade of interleukin 10 and C-X-C motif chemokine ligand 12 with Nano-Delivery promotes antitumor response in murine cancers. ACS Nano. 2018;12(10):9830-9841. doi:10.1021/acsnano.8b00967.
Silva JR, Sales NS, Silva MO, et al. Expression of a soluble IL-10 receptor enhances the therapeutic effects of a papillomavirus-associated antitumor vaccine in a murine model. Cancer Immunol Immunother. 2019;68(5):753-763. doi:10.1007/s00262-018-02297-2.
Bartsch C, Bartsch H, Jain AK, Laumas KR, Wetterberg L. Urinary melatonin levels in human breast cancer patients. J Neural Transm. 1981;52:281-294. doi:10.1007/BF01256753.
Khoory R, Stemme D. Plasma melatonin levels in patients suffering from colorectal carcinoma. J Pineal Res. 1988;5(3):251-258. doi:10.1111/j.1600-079x.1988.tb00651.x.
Ahabrach H, El Mlili N, Errami M, Cauli O. Circadian rhythm and concentration of melatonin in breast cancer patients. Endocr Metab Immune Disord Drug Targets. 2021;21(10):1869-1881. doi:10.2174/1871530320666201201110807.
Rodríguez-Santana C, Florido J, Martínez-Ruiz L, López-Rodríguez A, Acuña-Castroviejo D, Escames G. Role of melatonin in cancer: effect on clock genes. Int J Mol Sci. 2023;24(3):1919. doi:10.3390/ijms24031919.
Kinker GS, Oba-Shinjo SM, Carvalho-Sousa CE, et al. Melatonergic system-based two-gene index is prognostic in human gliomas. J Pineal Res. 2016;60(1):84-94. doi:10.1111/jpi.12293.
Wang L, Wang C, Choi WS. Use of melatonin in cancer treatment: where are we. Int J Mol Sci. 2022;23(7):3779. doi:10.3390/ijms23073779.
Pina G, Brun J, Tissot S, Claustrat B. Long-term alteration of daily melatonin, 6-sulfatoxymelatonin, cortisol, and temperature profiles in burn patients: a preliminary report. Chronobiol Int. 2010;27(2):378-392. doi:10.3109/07420520903502234.
Porro C, Cianciulli A, Panaro MA. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules. 2020;10(7):1017. doi:10.3390/biom10071017.
Rentzos M, Nikolaou C, Andreadou E, et al. Circulating interleukin-10 and interleukin-12 in Parkinson's disease. Acta Neurol Scand. 2009;119:332-337. doi:10.1111/j.1600-0404.2008.01103.x.
Fiorina P, Lattuada G, Silvestrini C, Ponari O, Dall'Aglio PD. Disruption of nocturnal melatonin rhythm and immunological involvement in ischaemic stroke patients. Scand J Immunol. 1999;50(2):228-231. doi:10.1046/j.1365-3083.1999.00579.x.
Björkqvist M, Wild EJ, Thiele J, et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease. J Exp Med. 2008;205(8):1869-1877. doi:10.1084/jem.20080178.
Godsell J, Rudloff I, Kandane-Rathnayake R, et al. Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus. Sci Rep. 2016;6:34604. doi:10.1038/srep34604.
Lacki JK, Samborski W, Mackiewicz SH. Interleukin-10 and interleukin-6 in lupus erythematosus and rheumatoid arthritis, correlations with acute phase proteins. Clin Rheumatol. 1997;16(3):275-278. doi:10.1007/BF02238963.
Córdoba-Moreno MO, Todero MF, Fontanals A, et al. Consequences of the lack of IL-10 in different endotoxin effects and its relationship with glucocorticoids. Shock. 2019;52(2):264-273. doi:10.1097/SHK.0000000000001233.
Córdoba-Moreno MO, Mendes MT, Markus RP, Fernandes PA. Rat resistance to rheumatoid arthritis induction as a function of the early-phase adrenal/pineal crosstalk. J Physiol. 2022;601:535-549. doi:10.1113/JP283456.
معلومات مُعتمدة: 2010/52687-1 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2012/23122-1 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2013/13691-1 Fundação de Amparo à Pesquisa do Estado de São Paulo; 3778555/2013-8 Conselho Nacional de Pesquisa, Tecnologia e Inovação; 304637/2013-0 Conselho Nacional de Pesquisa, Tecnologia e Inovação; 480097/2013-5 Conselho Nacional de Pesquisa, Tecnologia e Inovação
فهرسة مساهمة: Keywords: (p)STAT3; IL-10; NF-κB; bone marrow; immune-pineal axis; spleen and peritoneal cells
المشرفين على المادة: 0 (NF-kappa B)
JL5DK93RCL (Melatonin)
130068-27-8 (Interleukin-10)
تواريخ الأحداث: Date Created: 20231122 Date Completed: 20240122 Latest Revision: 20240122
رمز التحديث: 20240122
DOI: 10.1111/jpi.12923
PMID: 37990784
قاعدة البيانات: MEDLINE
الوصف
تدمد:1600-079X
DOI:10.1111/jpi.12923