دورية أكاديمية

Adipose cDC1s contribute to obesity-associated inflammation through STING-dependent IL-12 production.

التفاصيل البيبلوغرافية
العنوان: Adipose cDC1s contribute to obesity-associated inflammation through STING-dependent IL-12 production.
المؤلفون: Hildreth AD; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA., Padilla ET; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA., Gupta M; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA., Wong YY; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA., Sun R; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA., Legala AR; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA., O'Sullivan TE; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. tosullivan@mednet.ucla.edu.; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA. tosullivan@mednet.ucla.edu.
المصدر: Nature metabolism [Nat Metab] 2023 Dec; Vol. 5 (12), pp. 2237-2252. Date of Electronic Publication: 2023 Nov 23.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Nature Country of Publication: Germany NLM ID: 101736592 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2522-5812 (Electronic) Linking ISSN: 25225812 NLM ISO Abbreviation: Nat Metab Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer Nature, [2019]-
مواضيع طبية MeSH: Obesity*/metabolism , Insulin Resistance*, Animals ; Humans ; Adipose Tissue/metabolism ; Adiposity/genetics ; Inflammation/metabolism ; Interleukin-12/metabolism ; Mammals/metabolism
مستخلص: Obesity is associated with chronic low-grade white adipose tissue (WAT) inflammation that can contribute to the development of insulin resistance in mammals. Previous studies have identified interleukin (IL)-12 as a critical upstream regulator of WAT inflammation and metabolic dysfunction during obesity. However, the cell types and mechanisms that initiate WAT IL-12 production remain unclear. Here we show that conventional type 1 dendritic cells (cDC1s) are the cellular source of WAT IL-12 during obesity through analysis of mouse and human WAT single-cell transcriptomic datasets, IL-12 reporter mice and IL-12p70 protein levels by enzyme-linked immunosorbent assay. We demonstrate that cDC1s contribute to obesity-associated inflammation by increasing group 1 innate lymphocyte interferon-γ production and inflammatory macrophage accumulation. Inducible depletion of cDC1s increased WAT insulin sensitivity and systemic glucose tolerance during diet-induced obesity. Mechanistically, endocytosis of apoptotic bodies containing self-DNA by WAT cDC1s drives stimulator of interferon genes (STING)-dependent IL-12 production. Together, these results suggest that WAT cDC1s act as critical regulators of adipose tissue inflammation and metabolic dysfunction during obesity.
(© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Ward, Z. J. et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 381, 2440–2450 (2019). (PMID: 3185180010.1056/NEJMsa1909301)
Khaodhiar, L., McCowen, K. C. & Blackburn, G. L. Obesity and its comorbid conditions. Clin. Cornerstone 2, 17–31 (1999). (PMID: 1069628210.1016/S1098-3597(99)90002-9)
Guh, D. P. et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health 9, 88 (2009). (PMID: 19320986266742010.1186/1471-2458-9-88)
Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006). (PMID: 1716747110.1038/nature05482)
Després, J.-P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006). (PMID: 1716747710.1038/nature05488)
de Luca, C. & Olefsky, J. M. Inflammation and insulin resistance. FEBS Lett. 582, 97–105 (2009). (PMID: 10.1016/j.febslet.2007.11.057)
Shoelson, S. E. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006). (PMID: 16823477148317310.1172/JCI29069)
Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018). (PMID: 29328913845172310.1016/j.cell.2017.12.025)
Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 12, 15–28 (2016). (PMID: 2655313410.1038/nrendo.2015.189)
Lumeng, C. N., DeYoung, S. M., Bodzin, J. L. & Saltiel, A. R. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 56, 16–23 (2007). (PMID: 1719246010.2337/db06-1076)
Ying, W. et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372–384.e12 (2017). (PMID: 2894292010.1016/j.cell.2017.08.035)
Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017). (PMID: 2817965610.1038/nature21363)
Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008). (PMID: 18840360263077510.1016/j.cmet.2008.08.015)
O’Sullivan, T. E. et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 45, 428–441 (2016). (PMID: 27496734500488610.1016/j.immuni.2016.06.016)
Wensveen, F. M. et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat. Immunol. 16, 376–385 (2015). (PMID: 2572992110.1038/ni.3120)
Lee, B.-C. et al. Adipose natural killer cells regulate adipose tissue macrophages to promote insulin resistance in obesity. Cell Metab. 23, 685–698 (2016). (PMID: 27050305483352710.1016/j.cmet.2016.03.002)
Wang, H. et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat. Commun. 10, 3254 (2019). (PMID: 31332184664640710.1038/s41467-019-11270-1)
O’Rourke, R. W. et al. Systemic inflammation and insulin sensitivity in obese IFN-γ knockout mice. Metabolism 61, 1152–1161 (2012). (PMID: 22386937345792110.1016/j.metabol.2012.01.018)
Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021). (PMID: 33907320810239110.1038/s41590-021-00922-4)
Bradley, D. et al. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat. Commun. 13, 5606 (2022). (PMID: 36153324950939710.1038/s41467-022-33067-5)
Pacifico, L. et al. Increased T-helper interferon-γ-secreting cells in obese children. Eur. J. Endocrinol. 154, 691–697 (2006). (PMID: 1664501610.1530/eje.1.02138)
Dobrian, A. D. et al. STAT4 deficiency reduces obesity-induced insulin resistance and adipose tissue inflammation. Diabetes 62, 4109–4121 (2013). (PMID: 23939393383705310.2337/db12-1275)
Nam, H., Ferguson, B. S., Stephens, J. M. & Morrison, R. F. Impact of obesity on IL-12 family gene expression in insulin responsive tissues. Biochim. Biophys. Acta Mol. Basis Dis. 1832, 11–19 (2013). (PMID: 10.1016/j.bbadis.2012.08.011)
Schmidt, F. M. et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS ONE 10, e0121971 (2015). (PMID: 25781614436336610.1371/journal.pone.0121971)
Suárez-Álvarez, K. et al. Serum IL-12 is increased in Mexican obese subjects and associated with low-grade inflammation and obesity-related parameters. Mediators Inflamm. 2013, 967067 (2013).
Cottam, M. A., Caslin, H. L., Winn, N. C. & Hasty, A. H. Multiomics reveals persistence of obesity-associated immune cell phenotypes in adipose tissue during weight loss and weight regain in mice. Nat. Commun. 13, 2950 (2022). (PMID: 35618862913574410.1038/s41467-022-30646-4)
Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 603, 926–933 (2022). (PMID: 35296864950482710.1038/s41586-022-04518-2)
Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003). (PMID: 1256329710.1038/nri1001)
Reinhardt, R. L., Hong, S., Kang, S.-J., Wang, Z. & Locksley, R. M. Visualization of IL-12/23p40 in vivo reveals immunostimulatory dendritic cell migrants that promote Th1 differentiation. J. Immunol. 177, 1618–1627 (2006). (PMID: 1684947010.4049/jimmunol.177.3.1618)
Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira da Costa, M. & Reis e Sousa, C. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021). (PMID: 3348164310.1146/annurev-immunol-061020-053707)
Vignali, D. A. A. & Kuchroo, V. K. IL-12 family cytokines: immunological playmakers. Nat. Immunol. 13, 722–728 (2012). (PMID: 22814351415881710.1038/ni.2366)
Bertola, A. et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61, 2238–2247 (2012). (PMID: 22596049342541710.2337/db11-1274)
Cho, K. W. et al. Adipose tissue dendritic cells are independent contributors to obesity-induced inflammation and insulin resistance. J. Immunol. 197, 3650–3661 (2016). (PMID: 2768374810.4049/jimmunol.1600820)
Stefanovic-Racic, M. et al. Dendritic cells promote macrophage infiltration and comprise a substantial proportion of obesity-associated increases in CD11c + cells in adipose tissue and liver. Diabetes 61, 2330–2339 (2012). (PMID: 22851575342542710.2337/db11-1523)
Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018). (PMID: 29429633584716810.1016/j.cell.2018.01.004)
Ghilas, S. et al. Natural killer cells and dendritic epidermal γδ T cells orchestrate type 1 conventional DC spatiotemporal repositioning toward CD8 + T cells. iScience 24, 103059 (2021). (PMID: 34568787844925110.1016/j.isci.2021.103059)
Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020). (PMID: 3210320410.1038/s41596-020-0292-x)
Weizman, O.-E. et al. ILC1 confer early host protection at initial sites of viral infection. Cell 171, 795–808.e12 (2017). (PMID: 29056343568785010.1016/j.cell.2017.09.052)
Riggan, L. et al. CRISPR-Cas9 ribonucleoprotein-mediated genomic editing in mature primary innate immune cells. Cell Rep. 31, 107651 (2020). (PMID: 32433960729487610.1016/j.celrep.2020.107651)
Yamazaki, C. et al. Critical roles of a dendritic cell subset expressing a chemokine receptor, XCR1. J. Immunol. 190, 6071–6082 (2013). (PMID: 2367019310.4049/jimmunol.1202798)
Nishimura, S. et al. CD8 + effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009). (PMID: 1963365810.1038/nm.1964)
Macdougall, C. E. et al. Visceral adipose tissue immune homeostasis is regulated by the crosstalk between adipocytes and dendritic cell subsets. Cell Metab. 27, 588–601.e4 (2018). (PMID: 29514067584680010.1016/j.cmet.2018.02.007)
Hernández-García, E. et al. Conventional type 1 dendritic cells protect against age-related adipose tissue dysfunction and obesity. Cell. Mol. Immunol. 19, 260–275 (2022). (PMID: 34983945880396010.1038/s41423-021-00812-7)
Hamade, H. et al. BATF3 protects against metabolic syndrome and maintains intestinal epithelial homeostasis. Front. Immunol. 13, 841065 (2022). (PMID: 35812447925724210.3389/fimmu.2022.841065)
Hopfner, K.-P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020). (PMID: 3242433410.1038/s41580-020-0244-x)
Montecino-Rodriguez, E. & Dorshkind, K. Use of busulfan to condition mice for bone marrow transplantation. STAR Protoc. 1, 100159 (2020). (PMID: 33377053775735510.1016/j.xpro.2020.100159)
Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014). (PMID: 25517616515559310.1016/j.immuni.2014.10.019)
Wang, H. et al. cGAS is essential for the antitumor effect of immune checkpoint blockade. Proc. Natl Acad. Sci. USA 114, 1637–1642 (2017). (PMID: 28137885532099410.1073/pnas.1621363114)
Carozza, J. A. et al. Extracellular cGAMP is a cancer-cell-produced immunotransmitter involved in radiation-induced anticancer immunity. Nat. Cancer 1, 184–196 (2020). (PMID: 33768207799003710.1038/s43018-020-0028-4)
Marcus, A. et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49, 754–763.e4 (2018). (PMID: 30332631648830610.1016/j.immuni.2018.09.016)
Ritchie, C., Cordova, A. F., Hess, G. T., Bassik, M. C. & Li, L. SLC19A1 is an importer of the immunotransmitter cGAMP. Mol. Cell 75, 372–381.e5 (2019). (PMID: 31126740671139610.1016/j.molcel.2019.05.006)
Klarquist, J. et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. 193, 6124–6134 (2014). (PMID: 2538582010.4049/jimmunol.1401869)
Woo, S.-R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014). (PMID: 25517615438488410.1016/j.immuni.2014.10.017)
Nishimoto, S. et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci. Adv. 2, e1501332 (2016). (PMID: 27051864482037310.1126/sciadv.1501332)
Merrick, D. et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 364, eaav2501 (2019). (PMID: 31023895681623810.1126/science.aav2501)
Kumari, M., Heeren, J. & Scheja, L. Regulation of immunometabolism in adipose tissue. Semin. Immunopathol. 40, 189–202 (2018). (PMID: 2920982810.1007/s00281-017-0668-3)
Kakarla, R., Hur, J., Kim, Y. J., Kim, J. & Chwae, Y.-J. Apoptotic cell-derived exosomes: messages from dying cells. Exp. Mol. Med. 52, 1–6 (2020). (PMID: 31915368700069810.1038/s12276-019-0362-8)
Atkin-Smith, G. K. & Poon, I. K. H. Disassembly of the dying: mechanisms and functions. Trends Cell Biol. 27, 151–162 (2017). (PMID: 2764701810.1016/j.tcb.2016.08.011)
Essandoh, K. et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim. Biophys. Acta Mol. Basis Dis. 1852, 2362–2371 (2015). (PMID: 10.1016/j.bbadis.2015.08.010)
de Mingo Pulido, Á. et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 54, 1154–1167.e7 (2021). (PMID: 33979578819249610.1016/j.immuni.2021.04.019)
Iyoda, T. et al. The CD8ϩ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J. Exp. Med. 195, 1289–1302 (2002). (PMID: 12021309219375610.1084/jem.20020161)
Platt, C. D. et al. Mature dendritic cells use endocytic receptors to capture and present antigens. Proc. Natl Acad. Sci. USA 107, 4287–4292 (2010). (PMID: 20142498284013410.1073/pnas.0910609107)
Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012). (PMID: 22505458333698410.1172/JCI60644)
Pamir, N. et al. Granulocyte/macrophage colony-stimulating factor-dependent dendritic cells restrain lean adipose tissue expansion. J. Biol. Chem. 290, 14656–14667 (2015). (PMID: 25931125450553210.1074/jbc.M115.645820)
Harly, C. et al. The transcription factor TCF-1 enforces commitment to the innate lymphoid cell lineage. Nat. Immunol. 20, 1150–1160 (2019). (PMID: 31358996670786910.1038/s41590-019-0445-7)
Ataide, M. A. et al. BATF3 programs CD8 + T cell memory. Nat. Immunol. 21, 1397–1407 (2020). (PMID: 3298932810.1038/s41590-020-0786-2)
Lee, W., Kim, H. S., Hwang, S. S. & Lee, G. R. The transcription factor Batf3 inhibits the differentiation of regulatory T cells in the periphery. Exp. Mol. Med. 49, e393 (2017). (PMID: 29147008570418610.1038/emm.2017.157)
Kim, D.-H. et al. The role of GM-CSF in adipose tissue inflammation. Am. J. Physiol. Endocrinol. Metab. 295, E1038–E1046 (2008). (PMID: 18765677258481810.1152/ajpendo.00061.2008)
Darrasse-Jèze, G. et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med. 206, 1853–1862 (2009). (PMID: 19667061273715610.1084/jem.20090746)
McKenna, H. J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000). (PMID: 1082803410.1182/blood.V95.11.3489)
Guendel, F. et al. Group 3 innate lymphoid cells program a distinct subset of IL-22BP-producing dendritic cells demarcating solitary intestinal lymphoid tissues. Immunity 53, 1015–1032.e8 (2020). (PMID: 3320720910.1016/j.immuni.2020.10.012)
Sano, T. et al. Ccr7 null mice are protected against diet-induced obesity via Ucp1 upregulation and enhanced energy expenditure. Nutr. Metab. (Lond.) 16, 43 (2019). (PMID: 3131222910.1186/s12986-019-0372-5)
Mao, Y. et al. STING–IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler. Thromb. Vasc. Biol. 37, 920–929 (2017). (PMID: 28302626540830510.1161/ATVBAHA.117.309017)
Stutte, S. et al. High-fat diet rapidly modifies trafficking, phenotype, and function of plasmacytoid dendritic cells in adipose tissue. J. Immunol. 208, 1445–1455 (2022). (PMID: 35181637891935010.4049/jimmunol.2100022)
Ohta, T. et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci. Rep. 6, 23505 (2016). (PMID: 27005831480430710.1038/srep23505)
Silva-Sanchez, A. et al. Activation of regulatory dendritic cells by Mertk coincides with a temporal wave of apoptosis in neonatal lungs. Sci. Immunol. 8, eadc9081 (2023). (PMID: 3732732210.1126/sciimmunol.adc9081)
Hildreth, A. D., Padilla, E. T., Tafti, R. Y., Legala, A. R. & O’Sullivan, T. E. Sterile liver injury induces a protective tissue-resident cDC1-ILC1 circuit through cDC1-intrinsic cGAS-STING-dependent IL-12 production. Cell Rep. 42, 112141 (2023). (PMID: 368071461043566810.1016/j.celrep.2023.112141)
Deczkowska, A. et al. XCR1 + type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis. Nat. Med. 27, 1043–1054 (2021). (PMID: 3401713310.1038/s41591-021-01344-3)
Maric, I. et al. Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Front. Nutr. 9, 828522 (2022). (PMID: 35284452890888910.3389/fnut.2022.828522)
Pettersson, U. S., Waldén, T. B., Carlsson, P.-O., Jansson, L. & Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 7, e46057 (2012). (PMID: 23049932345810610.1371/journal.pone.0046057)
Hildreth, A. D., Riggan, L. & O’Sullivan, T. E. CRISPR-Cas9 ribonucleoprotein-mediated genomic editing in primary innate immune cells. STAR Protoc. https://doi.org/10.1016/j.xpro.2020.100113 (2020).
Riggan, L. et al. The transcription factor Fli1 restricts the formation of memory precursor NK cells during viral infection. Nat. Immunol. 23, 556–567 (2022). (PMID: 35288713898964710.1038/s41590-022-01150-0)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048)
Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019). (PMID: 31066453660246110.1093/nar/gkz369)
معلومات مُعتمدة: F31DK130585 U.S. Department of Health & Human Services | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (National Institute of Diabetes & Digestive & Kidney Diseases)
المشرفين على المادة: 187348-17-0 (Interleukin-12)
تواريخ الأحداث: Date Created: 20231123 Date Completed: 20231221 Latest Revision: 20240122
رمز التحديث: 20240123
DOI: 10.1038/s42255-023-00934-4
PMID: 37996702
قاعدة البيانات: MEDLINE
الوصف
تدمد:2522-5812
DOI:10.1038/s42255-023-00934-4