دورية أكاديمية

Nutritive value of fermented soybean grains for ruminants.

التفاصيل البيبلوغرافية
العنوان: Nutritive value of fermented soybean grains for ruminants.
المؤلفون: de Carvalho LB; Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil., da Costa AC; Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil., Neta BSM; Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil., Fonseca ASR; Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil., Vieira KPN; São Paulo State University Julio de Mesquita, Jaboticabal, São Paulo, Brazil., de Abreu MLC; Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil., E Pedreira BC; University of Tennessee, Knoxville, TN, USA., Galati RL; Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil., Guerra WD; Association of Soybean and Corn Producers of the State of Mato Grosso, Cuiabá, MT, Brazil., Cabral LDS; Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil. Luciano.cabral@ufmt.br.
المصدر: Tropical animal health and production [Trop Anim Health Prod] 2023 Nov 24; Vol. 55 (6), pp. 420. Date of Electronic Publication: 2023 Nov 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 1277355 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-7438 (Electronic) Linking ISSN: 00494747 NLM ISO Abbreviation: Trop Anim Health Prod Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Heidelberg : Springer
Original Publication: Edinburgh, Livingstone.
مواضيع طبية MeSH: Glycine max* , Fermented Foods*, Sheep ; Animals ; Animal Feed/analysis ; Digestion ; Diet/veterinary ; Rumen/metabolism ; Edible Grain ; Ruminants ; Nutritive Value ; Zea mays/metabolism
مستخلص: Fermented soybean grain (FSBG) is considered improper to use as a protein source in animal nutrition, since it is assumed that defects cause changes on its chemical composition and favor mycotoxins production, but chemical composition data does not support this theory and in vivo studies are missing. Thus, this study aimed to evaluate the effects of FSBG in feedlot lamb diets. For that, two types of FSBG (partially fermented and completely fermented, PFSBG and CFSBG) and one standard soybean grain (SSBG) were obtained and evaluated alone or as a component of experimental diets by in vitro and in vivo studies, where FSBG totally replaced SSBG in feedlot lamb diets, which was included in the experimental diets in 17.4% on dry matter basis as protein source. Before the studies, both soybeans were sent to a specialized laboratory where no mycotoxins were detected. As a result, lower DM and carbohydrate contents but higher crude protein, fiber, and indigestible NDF contents were measured in CFSBG than in SSBG. Furthermore, both types of FSBG showed lower digestibility in vitro dry matter (IVDMD) than SSBG when evaluated separately; however, when evaluated in experimental diets, the substitution of SSBG for FSBG did not affect IVDMD. It was also observed that FSBG also had less rumen-degradable protein than SSBG (mean 47.9 vs 86.4%). In the in vivo study, FSBG did not affect nutrient intake, apparent digestibility, or animal performance (i.e., average daily gain and carcass gain). Thus, mycotoxins-free FSBG may be an alternative to totally replace SSBG in feedlot lamb diets.
(© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Amin, A.B., Zhang, L., Zhang, J., Mao, S., 2022. Fermented soybean meal modified the rumen microbiome to enhance the yield of milk components in Holstein cows. Applied Microbiology Biotechnology, 22, 7627-7642. https://doi.org/10.1007/s00253-022-12240-2. (PMID: 10.1007/s00253-022-12240-2)
Andrade, P.J., 2016. Qualidade de grãos de soja produzidos em Mato Grosso entre 2006 e 2016. (unpublished PhD thesis, University Federal of Mato Grosso).
AOAC-Association of Official Analytical Chemists International. (2002) Official methods of analysis of AOAC International, 17th Washington, DC.
AOAC-Association of Official Analytical Chemists (1990) Official methods of analysis. 15th AOAC, Washington, DC.
AOCS (2005) Rapid determination of oil/fat utilizing high-temperature solvent extraction. AOCS Official Procedure Am 5-04.
Berhow, M.A., Singh, M., Bowman, M.J., Price, N.P., Vaughn, S.F., Liu, S.X., 2020. Quantitative NIR determination of isoflavone and saponin content of ground soybeans. Food Chemistry, 317, 126373. https://doi.org/10.1016/j.foodchem.2020.126373. (PMID: 10.1016/j.foodchem.2020.12637332087514)
Brasil - Leis e Decretos. Ministério da Agricultura, Pecuária e Abastecimento (2007) Instrução Normativa n° 11, de 15 de maio de 2007. Diário Oficial da União, de 16 de maio de 2007. Seção I, p.13-15, Brasília, 2007.
Broderick, G.A., 2018. Review: Optimizing ruminant conversion of feed protein to human food protein. Animal, 12, 1722-1734. https://doi.org/10.1017/s1751731117002592. (PMID: 10.1017/s175173111700259229151400)
Broderick, G.A., Faciola, A.P., Armentano, L.E., 2015. Replacing dietary soybean meal with canola meal improves production and efficiency of lactating dairy cows. Journal of Dairy Science, 98, 5672-87. https://doi.org/10.3168/jds.2015-9563 . (PMID: 10.3168/jds.2015-956326074230)
Cabral, L.S., Neves, E. M. O., Zervoudakis, J. T., Abreu, J. G., Rodrigues, R. C., Souza, A.L., Oliveira I.S., 2008. Estimativas dos requisitos nutricionais de ovinos em condições brasileiras. Revista Brasileira de Saúde e Produção Animal, 9, 529-542.
Calsamiglia, S., Stern, M. D., 1995. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. Journal of Animal Science, 73, 1459–1465. https://doi.org/10.2527/1995.7351459x . (PMID: 10.2527/1995.7351459x7665377)
Carvalho, L.B., Abreu, M.L.C., Caneppele, M.A.B., Corrêa, G.S.S., Vieira, B.S., Lima, L.R., Guerra, W.D., Cabral, L.S., 2021. Soybean meal from damaged grains replacing standard soybean meal in diets of feedlot lambs. Revista Brasileira de Zootecnia, 50, 20190268. https://doi.org/10.37496/rbz5020190268. (PMID: 10.37496/rbz5020190268)
Cone, J.W., Van Gelder, A.H., 1999. Influence of protein fermentation on gas production profiles. Animal Feed Science and Technology, 76, 251-264. https://doi.org/10.1016/S0377-8401(98)00222-3. (PMID: 10.1016/S0377-8401(98)00222-3)
Crampton, E.W., Donefer, E., Lloyd, L.E, 1960. A Nutritive Value Index for Forages. Journal of animal Science, 19, 538-544. https://doi.org/10.2527/jas1960.192538x. (PMID: 10.2527/jas1960.192538x)
Elgioushy, M.M., Elgaml, S.A., El-Adl, M.M., Hegazy, A.M., Hashish, EA, 2020. Aflatoxicosis in cattle: clinical findings and biochemical alterations. Environmental Science and Pollution Research, 27, 35526–35534. https://doi.org/10.1007/s11356-020-09489-3. (PMID: 10.1007/s11356-020-09489-332594430)
EMBRAPA. Lorini, I. 2018. Qualidade de sementes grãos comerciais de soja no Brasil-safra 2016/17. (Documento 403 – Embrapa soja).
Erfle, J.D., Boila, R.J., Teather, R.M., Mahadevan, S., Sauer, F.D., 1982. Effect of pH on Fermentation Characteristics and Protein Degradation by Rumen Microorganisms In vitro. Journal of Dairy Science, 65, 1457-1464.  https://doi.org/10.3168/jds.S0022-0302(82)82368-0 . (PMID: 10.3168/jds.S0022-0302(82)82368-0)
Faldet, M.A., Satter, L.D., 1991. Feeding Heat-Treated Full Fat Soybeans to Cows in Early Lactation. Journal of Dairy Science, 74, 3047-3054. https://doi.org/10.3168/jds.S0022-0302(91)78490-7. (PMID: 10.3168/jds.S0022-0302(91)78490-71779058)
Feng, H., Qu, H., Liu, Y., Shi, Y., Wu, S., Bao, W 2020. Effect of fermented soybean meal supplementation on some growth performance, blood chemical parameters, and fecal microflora of finishing pigs. Revista Brasileira de Zootecnia, 49, 20190096. https://doi.org/10.37496/rbz4920190096. (PMID: 10.37496/rbz4920190096)
Ferreira, C.D., Ziegler, V., Goebel, J.T.S., Hoffmann, J.F., Carvalho, I.R., Chaves, F.C., Oliveira, M., 2019. Changes in phenolic acid and isoflavone contentes during soybean drying and storage. Journal of Agriculture and Food Chemistry, 67, 1146-1155. https://doi.org/10.1021/acs.jafc.8b06808. (PMID: 10.1021/acs.jafc.8b06808)
Fink-Gremmels, J., 2008. The role of mycotoxins in the health and performance of dairy cows. The Veterinary Journal, 176, 84-92. https://doi.org/10.1016/j.tvjl.2007.12.034. (PMID: 10.1016/j.tvjl.2007.12.03418342554)
Gebru, E., Lee, J.S., Son, J.C., Yang, S.Y., Shin, S.A., Kim, B., Kim, M.K., Park, S.C., 2010. Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. Journal of Animal Science, 88, 3880–3886. https://doi.org/10.2527/jas.2010-2939. (PMID: 10.2527/jas.2010-293920729283)
Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A and Tempio G 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy. Retrieved on 10 July 2019 from http://www.fao.org/3/a-i3437e.pdf.
Grant, G., 1989. Anti-nutritional effects of soybean: A review. Progress in Food & Nutrition Science, 13, 317–348.
Gu, C., Pan, H., Sun, Z., Qin, G., 2010. Effect of soybean variety on anti-nutritional factors content, and growth performance and nutrients metabolism in rat. International Journal of Molecular Sciences, 11, 1048-1056. https://doi.org/10.3390/ijms11031048. (PMID: 10.3390/ijms11031048204799982869231)
Hou, H.J., Chang, K.C., 2004. Storage conditions affect soybean color, chemical composition and tofu qualities. Journal of Food Processing and Preservation, 28. https://doi.org/10.1111/j.1745-4549.2004.24015.x.
Jenkins, T.C., Wallace, R.J., Moate, P.J., Mosley, E.E., 2008. Board-Invited Review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. Journal of Animal Science, 86, 397-412.  https://doi.org/10.2527/jas.2007-0588. (PMID: 10.2527/jas.2007-058818042812)
Kim, M.H., Yun, C.H., Lee, C.H., Ha, J.K., 2012. The effects of fermented soybean meal on immunophysiological and stress-related parameters in Holstein calves after weaning. Journal of Dairy Science, 95, 5203–5212. https://doi.org/10.3168/jds.2012-5317. (PMID: 10.3168/jds.2012-531722916926)
Lehmkuhl, A., 2011. Relação entre a qualidade física, nutricional e sanitária de grãos de soja em diferentes regiões de Mato Grosso. (unpublished PhD thesis, University Federal of Mato Grosso).
Lynch, G.P., 1972. Mycotoxins in Feedstuffs and Their Effect on Dairy Cattle. Journal of Dairy Science, 55, 1243-1255. https://doi.org/10.3168/jds.S0022-0302(72)85657-1. (PMID: 10.3168/jds.S0022-0302(72)85657-14627505)
McDougall, E.I., 1948. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochemical Journal, 43, 99-109. (PMID: 10.1042/bj0430099188898741274641)
Mertens, D.R., 1996. Formulating dairy rations: using fiber and carbohydrate analyses to formulate dairy rations. In: Information conference with dairy and forage industries. (Madson: US Dairy Forage and Research Center.
Poore, M.H., Moore, J.A., Swingle, R.S., 1990. Differential passage rates and digestion of neutral detergent fiber from grain and forages in 30, 60 and 90% concentrate diets fed to steers. Journal of Animal Science, 68, 2965-2973. https://doi.org/10.2527/1990.6892965x. (PMID: 10.2527/1990.6892965x2170319)
Ramos, A.H., Timm, N.S., Ferreira, C.D., Antunes, A.C., Hoffmann, J.F., Rios, A.O., Oliveira, M., 2021. Effects of the intensification of soybean defects: Degradation metabolism of carbohydrates, organic acids, proteins, lipids, and phenolics. Journal of Food Processing and Preservation, 45, 15516. https://doi.org/10.1111/jfpp.15516. (PMID: 10.1111/jfpp.15516)
Reid, J.T., 1961. Problems of Feed Evaluation Related to Feeding of Dairy Cows. Journal of Dairy Science, 44, 2122-2133. https://doi.org/10.3168/jds.S0022-0302(61)90030-3. (PMID: 10.3168/jds.S0022-0302(61)90030-3)
Reynolds, C K., Tyrrell, H. F., Reynolds, P.J., 1991. Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: Whole body energy and nitrogen balance and visceral heat production. Journal of Nutrition, 121, 994-1003.   https://doi.org/10.1093/jn/121.7.994.
Satter, L.D., Slyter, L.L., 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition, 32, 199-208. https://doi.org/10.1079/BJN19740073. (PMID: 10.1079/BJN197400734472574)
Schofield, P., Pitt, R.E., Pell, A.N., 1994. Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science, 72, 2980-2991. https://doi.org/10.2527/1994.72112980x. (PMID: 10.2527/1994.72112980x7730194)
Sharma, M., Gupta, S.K., Majumder, B., Maurya, V.K., Deeba, F., Alam, A., Pandey, V., 2018. Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress. Plant Physiology and Biochemistry, 130, 529-541. https://doi.org/10.1016/j.plaphy.2018.08.001. (PMID: 10.1016/j.plaphy.2018.08.00130098585)
Silva Neto, I.M., 2015. Glicerina na alimentação de ovinos confinados. (unpublished PhD thesis, University Federal of Mato Grosso).
Sniffen, C.J., O’Connor, J.D., Van Soest, P.J., Fox, D.G., Russell, J. B., 1992. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal Animal Science, 70, 3562-3577. https://doi.org/10.2527/1992.70113562x. (PMID: 10.2527/1992.70113562x)
Souza JR (2015) Indicadores da perda de qualidade em grãos de soja. Dissertação (M.Sc.) Universidade Federal de Mato Grosso, Faculdade de Agronomia e Medicina Veterinária, Cuiabá.
Tamagno, S., Aznar-Moreno, J.A., Durrett, T.P., Vara Prasad, P.V., Rotundo, J.L., Ciampitti, I.A., 2020. Dynamics of oil and fatty acid accumulation during seed development in historical soybean varieties. Field Crops Research, 248, 107719. https://doi.org/10.1016/j.fcr.2020.107719. (PMID: 10.1016/j.fcr.2020.107719)
Valadares Filho, S.C., Lopes, S.A., Silva, B.C., Chizzotti, M.L., Bizzaro, L.Z. 2018. CQBAL: Tabelas brasileiras de composição de alimentos para ruminantes: www.cqbal.com.br.
Valente, T.N.P., Detmann, E., Queiroz, A.C., Valadares Filho, S.C., Gomes, D.I., Figueiras, J.F., 2011. Evaluation of ruminal degradation profiles of forages using bags made from different textiles. Revista Brasileira de Zootecnia, 40, 2565-2573. https://doi.org/10.1590/S1516-35982011001100039. (PMID: 10.1590/S1516-35982011001100039)
Van Soest, P.J., 1994. Nutritional Ecology of the Ruminant, (Cornell University Press). (PMID: 10.7591/9781501732355)
Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science, 74, 3583-3597. (PMID: 1660498)
Wang, Z., Yu, Y., Li, X., Xiao, H., Zhang, P., Shen, W., Wan, F., He, J., Tang, S., Tan, Z., Wu, D., Yao, H., 2021. Fermented soybean meal replacement in the diet of lactating Holstein dairy cows: modulated rumen fermentation and ruminal microflora. Frontiers Microbiology, 12, 625857. https://doi.org/10.3389/fmicb.2021 .
Wijewardana, C., Reddy, K.R., Bellaloui, N., 2019.Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chemistry, 25, 92-100. Doi: https://doi.org/10.1016/j.foodchem.2018.11.035. (PMID: 10.1016/j.foodchem.2018.11.035)
Wilson, R.F., Novitzky, W.P., Fenner, G.P., 1995. Effect of fungal damage on seed composition and quality of soybeans. Journal of the American Oil Chemists’ Society, 72, 1425-1429. (PMID: 10.1007/BF02577832)
Ziegler, V., Marini, L.J., Ferreira, C.D., Bertinetti, I.A., Silva, W.S.V., Goebel, J.T.S., Oliveira, M., Elias, M.C., 2016.Effects of temperature and moisture during semi-hermetic storage on the quality evaluation parameters of soybean grain and oil. Semina: Ciências Agrárias, 37, 131-144.
فهرسة مساهمة: Keywords: Digestibility; Fermented soybean grain; In vitro evaluation; In vivo study; Lamb; Oilseeds
تواريخ الأحداث: Date Created: 20231124 Date Completed: 20231127 Latest Revision: 20231213
رمز التحديث: 20231215
DOI: 10.1007/s11250-023-03813-y
PMID: 37999775
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-7438
DOI:10.1007/s11250-023-03813-y