دورية أكاديمية

Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction.

التفاصيل البيبلوغرافية
العنوان: Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction.
المؤلفون: Wang F; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China., Xie L; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China., Sun N; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China., Zhi T; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China. zhit@njupt.edu.cn., Zhang M; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China., Liu Y; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China., Luo Z; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China., Yi L; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China., Zhao Q; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China. iamqzhao@njupt.edu.cn.; State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan, Nanjing, 210023, People's Republic of China. iamqzhao@njupt.edu.cn., Wang L; College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, People's Republic of China. wanglonglu@hnu.edu.cn.
المصدر: Nano-micro letters [Nanomicro Lett] 2023 Nov 24; Vol. 16 (1), pp. 32. Date of Electronic Publication: 2023 Nov 24.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 101727940 Publication Model: Electronic Cited Medium: Internet ISSN: 2150-5551 (Electronic) Linking ISSN: 21505551 NLM ISO Abbreviation: Nanomicro Lett Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: [Berlin] : Springer
Original Publication: Fayetteville, Ark. : OAHOST
مستخلص: Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions, especially electrocatalytic hydrogen evolution reaction (HER). In recent years, deformable catalysts for HER have made great progress and would become a research hotspot. The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration. The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties. Here, firstly, we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro-nanostructures evolution in catalytic HER process. Secondly, a series of strategies to design highly active catalysts based on the mechanical flexibility of low-dimensional nanomaterials were summarized. Last but not least, we presented the challenges and prospects of the study of flexible and deformable micro-nanostructures of electrocatalysts, which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst.
(© 2023. The Author(s).)
References: Nano Lett. 2013 Jul 10;13(7):3426-33. (PMID: 23799638)
Adv Mater. 2022 Jul;34(27):e2202195. (PMID: 35474349)
Adv Mater. 2018 Mar;30(9):. (PMID: 29315869)
Phys Rev Lett. 2019 Sep 13;123(11):116101. (PMID: 31573244)
Adv Mater. 2018 Mar;30(10):. (PMID: 29333666)
Nat Commun. 2016 Jun 29;7:11850. (PMID: 27353725)
Angew Chem Int Ed Engl. 2023 Jan 16;62(3):e202212653. (PMID: 36399050)
Nat Commun. 2019 Jan 23;10(1):399. (PMID: 30674896)
Adv Mater. 2023 Apr;35(16):e2210746. (PMID: 36756807)
Nanomicro Lett. 2023 Aug 9;15(1):194. (PMID: 37556089)
ACS Nano. 2009 Sep 22;3(9):2653-9. (PMID: 19691285)
Sci Adv. 2020 May 13;6(20):eaba1321. (PMID: 32426506)
Small. 2022 Apr;18(16):e2105129. (PMID: 35253963)
Small. 2022 Jan;18(4):e2104043. (PMID: 34846781)
Nano Lett. 2021 Oct 13;21(19):8095-8102. (PMID: 34505776)
ACS Energy Lett. 2023 Feb 07;8(3):1330-1335. (PMID: 36937790)
J Am Chem Soc. 2020 May 20;142(20):9408-9414. (PMID: 32302117)
Angew Chem Int Ed Engl. 2021 Oct 11;60(42):22722-22728. (PMID: 34402159)
Nanotechnology. 2017 Jan 13;28(2):025603. (PMID: 27924786)
Acc Chem Res. 2021 Jan 5;54(1):35-45. (PMID: 33044822)
Chemistry. 2022 Jan 3;28(1):e202102915. (PMID: 34591340)
Nat Commun. 2020 Mar 2;11(1):1151. (PMID: 32123176)
Phys Chem Chem Phys. 2017 Jul 19;19(28):18356-18365. (PMID: 28678277)
Angew Chem Int Ed Engl. 2020 Jul 13;59(29):12192-12198. (PMID: 32330355)
Nano Res. 2023;16(2):1992-2002. (PMID: 36405985)
ACS Nano. 2014 Aug 26;8(8):8468-76. (PMID: 25110810)
Adv Mater. 2014 Dec 17;26(47):8023-8. (PMID: 25363090)
Adv Mater. 2023 Aug;35(32):e2300505. (PMID: 37147742)
Nano Lett. 2022 Jul 27;22(14):5742-5750. (PMID: 35666985)
Light Sci Appl. 2020 Nov 23;9(1):190. (PMID: 33298826)
Phys Chem Chem Phys. 2023 May 10;25(18):12565-12586. (PMID: 37102210)
Nat Commun. 2021 Mar 16;12(1):1687. (PMID: 33727537)
Nanoscale. 2023 Feb 2;15(5):2276-2284. (PMID: 36633321)
Nano Lett. 2023 Apr 26;23(8):3274-3281. (PMID: 37014819)
Nat Commun. 2023 Apr 4;14(1):1873. (PMID: 37015944)
Nanoscale. 2022 Dec 15;14(48):17841-17861. (PMID: 36464978)
Nat Commun. 2021 Nov 3;12(1):6335. (PMID: 34732747)
ACS Nano. 2023 Apr 11;17(7):6781-6788. (PMID: 36989457)
Chem Rev. 2022 Jan 12;122(1):1273-1348. (PMID: 34788542)
Adv Mater. 2022 Aug;34(32):e2202609. (PMID: 35610760)
Research (Wash D C). 2023;6:0057. (PMID: 36939429)
Nature. 2019 Oct;574(7776):81-85. (PMID: 31554968)
Adv Mater. 2014 Sep;26(36):6250-4. (PMID: 25043462)
Nanoscale. 2021 Dec 16;13(48):20576-20582. (PMID: 34874043)
Chem Soc Rev. 2019 Jun 17;48(12):3265-3278. (PMID: 31089609)
Science. 2005 Sep 9;309(5741):1700-4. (PMID: 16151005)
Nanoscale. 2018 May 3;10(17):7918-7926. (PMID: 29670959)
ACS Nano. 2022 Apr 26;16(4):5743-5751. (PMID: 35377604)
Adv Mater. 2018 Jun;30(26):e1707301. (PMID: 29737007)
Angew Chem Int Ed Engl. 2023 Jan 26;62(5):e202212335. (PMID: 36380642)
ACS Nano. 2015 Jun 23;9(6):6478-83. (PMID: 26030397)
Chem Rev. 2023 May 10;123(9):6257-6358. (PMID: 36944098)
Sci Adv. 2023 Apr 5;9(14):eade9126. (PMID: 37018394)
Adv Mater. 2015 Nov 25;27(44):7204-12. (PMID: 26459261)
Nat Commun. 2021 Aug 20;12(1):5070. (PMID: 34417457)
Nanomicro Lett. 2020 Jul 2;12(1):140. (PMID: 34138122)
Chem Soc Rev. 2020 May 26;49(10):3072-3106. (PMID: 32309830)
Nat Commun. 2021 Mar 26;12(1):1928. (PMID: 33772009)
Adv Mater. 2023 Aug;35(32):e2302285. (PMID: 37248040)
Small. 2023 Sep;19(39):e2302216. (PMID: 37259266)
Nature. 2021 Mar;591(7850):385-390. (PMID: 33731947)
Sci Bull (Beijing). 2019 May 15;64(9):617-624. (PMID: 36659630)
Angew Chem Int Ed Engl. 2017 Jun 19;56(26):7610-7614. (PMID: 28464460)
Phys Rev Lett. 2018 Dec 28;121(26):266101. (PMID: 30636129)
Adv Mater. 2023 Jul;35(29):e2301593. (PMID: 37154063)
فهرسة مساهمة: Keywords: Deformable catalytic material; Hydrogen evolution reaction; Mechanical flexibility; Micro–nanostructures evolution
تواريخ الأحداث: Date Created: 20231124 Latest Revision: 20231127
رمز التحديث: 20240829
مُعرف محوري في PubMed: PMC10673806
DOI: 10.1007/s40820-023-01251-x
PMID: 37999792
قاعدة البيانات: MEDLINE
الوصف
تدمد:2150-5551
DOI:10.1007/s40820-023-01251-x