دورية أكاديمية

Primary cilium participates in radiation-induced bystander effects through TGF-β1 signaling.

التفاصيل البيبلوغرافية
العنوان: Primary cilium participates in radiation-induced bystander effects through TGF-β1 signaling.
المؤلفون: Qu P; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China., Shao Z; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China., Zhang Y; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China., He J; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China., Lu D; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China., Wei W; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China., Hua J; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China., Wang W; Department of Urological Surgery, The Second Hospital of Lanzhou University, Lanzhou, China., Wang J; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China., Ding N; Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.; College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
المصدر: Journal of cellular physiology [J Cell Physiol] 2024 Feb; Vol. 239 (2), pp. e31163. Date of Electronic Publication: 2023 Nov 27.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-Liss Country of Publication: United States NLM ID: 0050222 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1097-4652 (Electronic) Linking ISSN: 00219541 NLM ISO Abbreviation: J Cell Physiol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Wiley-Liss
Original Publication: Philadelphia, Wistar Institute of Anatomy and Biology.
مواضيع طبية MeSH: Bystander Effect*/genetics , Bystander Effect*/radiation effects , Transforming Growth Factor beta1*/metabolism, Cilia/metabolism ; DNA ; RNA, Small Interfering/genetics ; Transforming Growth Factor beta/metabolism ; Humans ; Cell Line, Tumor
مستخلص: Many studies have indicated that tumor growth factor-beta (TGF-β) signaling mediates radiation-induced bystander effects (RIBEs). The primary cilium (PC) coordinates several signaling pathways including TGF-β signaling to regulate diverse cellular processes. But whether the PC participates in TGF-β induced RIBEs remains unclear. The cellular levels of TGF-β1 were detected by western blot analysis and the secretion of TGF-β1 was measured by ELISA kit. The ciliogenesis was altered by CytoD treatment, STIL siRNA transfection, IFT88 siRNA transfection, or KIF3a siRNA transfection, separately, and was detected by western blot analysis and immunofluorescence staining. G 0 /G 1 phase cells were arrested by serum starvation and S phase cells were induced by double thymidine block. The TGF-β1 signaling was interfered by LY2109761, a TGF-β receptor 1 (TβR1) inhibitor, or TGF-β1 neutral antibody. The DNA damages were induced by TGF-β1 or radiated conditional medium (RCM) from irradiated cells and were reflected by p21 expression, 53BP1 foci, and γH2AX foci. Compared with unirradiated control, both A549 and Beas-2B cells expressed and secreted more TGF-β1 after carbon ion beam or X-ray irradiation. RCM collected from irradiated cells or TGF-β1 treatment caused an increase of DNA damage in cocultured unirradiated Beas-2B cells while blockage of TGF-β signaling by TβR1 inhibitor or TGF-β1 neutral antibody alleviates this phenomenon. IFT88 siRNA or KIF3a siRNA impaired PC formation resulted in an aggravated DNA damage in bystander cells, while elevated PC formation by CytoD or STIL siRNA resulted in a decrease of DNA damage. Furthermore, TGF-β1 induced more DNA damages in S phases cells which showed lower PC formation rate and less DNA damages in G 0 /G 1 phase cells which showed higher PC formation rate. This study demonstrates the particular role of primary cilia during RCM induced DNA damages through TGF-β1 signaling restriction and thereby provides a functional link between primary cilia and RIBEs.
(© 2023 Wiley Periodicals LLC.)
References: Ahmadi, A., Najafi, M., Farhood, B., & Mortezaee, K. (2019). Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy. Journal of Cellular Physiology, 234(8), 12173-12187. https://doi.org/10.1002/jcp.27955.
Akhurst, R. J., & Hata, A. (2012). Targeting the TGFβ signalling pathway in disease. Nature Reviews Drug Discovery, 11(10), 790-811. https://doi.org/10.1038/nrd3810.
Anscher, M. S., Crocker, I. R., & Jirtle, R. L. (1990). Transforming growth factor-β1 expression in irradiated liver. Radiation Research, 122(1), 77-85. https://doi.org/10.2307/3577586.
Anvarian, Z., Mykytyn, K., Mukhopadhyay, S., Pedersen, L. B., & Christensen, S. T. (2019). Cellular signalling by primary cilia in development, organ function and disease. Nature Reviews Nephrology, 15(4), 199-219. https://doi.org/10.1038/s41581-019-0116-9.
Arrighi, N., Lypovetska, K., Moratal, C., Giorgetti-Peraldi, S., Dechesne, C. A., Dani, C., & Peraldi, P. (2017). The primary cilium is necessary for the differentiation and the maintenance of human adipose progenitors into myofibroblasts. Scientific Reports, 7(1), 15248. https://doi.org/10.1038/s41598-017-15649-2.
Baldari, C. T., & Rosenbaum, J. (2010). Intraflagellar transport: It's not just for cilia anymore. Current Opinion in Cell Biology, 22(1), 75-80. https://doi.org/10.1016/j.ceb.2009.10.010.
Burdak-Rothkamm, S., Short, S. C., Folkard, M., Rothkamm, K., & Prise, K. M. (2007). ATR-dependent radiation-induced γH2AX foci in bystander primary human astrocytes and glioma cells. Oncogene, 26(7), 993-1002. https://doi.org/10.1038/sj.onc.1209863.
Clement, C. A., Ajbro, K. D., Koefoed, K., Vestergaard, M. L., Veland, I. R., Henriques de Jesus, M. P. R., Pedersen, L. B., Benmerah, A., Andersen, C. Y., Larsen, L. A., & Christensen, S. T. (2013). TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Reports, 3(6), 1806-1814. https://doi.org/10.1016/j.celrep.2013.05.020.
Cruz, N. M., Reddy, R., McFaline-Figueroa, J. L., Tran, C., Fu, H., & Freedman, B. S. (2022). Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia. Nature Biomedical Engineering, 6(4), 463-475. https://doi.org/10.1038/s41551-022-00880-8.
Ding, N., Pei, H., He, J., Furusawa, Y., Hirayama, R., Liu, C., Matsumoto, Y., Li, H., Hu, W., Li, Y., Wang, J., Wang, T., & Zhou, G. (2013). Simulated studies on the biological effects of space radiation on quiescent human fibroblasts. Advances in Space Research, 52(7), 1314-1319. https://doi.org/10.1016/j.asr.2013.06.030.
Filipová, A., Diaz-Garcia, D., Bezrouk, A., Čížková, D., Havelek, R., Vávrová, J., Dayanithi, G., & Řezacová, M. (2015). Ionizing radiation increases primary cilia incidence and induces multiciliation in C2C12 myoblasts. Cell Biology International, 39(8), 943-953. https://doi.org/10.1002/cbin.10462.
Gao, Y., Ma, H., Lv, C., Lan, F., Wang, Y., & Deng, Y. (2021). Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Letters, 499, 73-84. https://doi.org/10.1016/j.canlet.2020.10.049.
Gencer, S., Oleinik, N., Kim, J., Panneer Selvam, S., De Palma, R., Dany, M., Nganga, R., Thomas, R. J., Senkal, C. E., Howe, P. H., & Ogretmen, B. (2017). TGF-β receptor I/II trafficking and signaling at primary cilia are inhibited by ceramide to attenuate cell migration and tumor metastasis. Science Signaling, 10(502), eaam7464. https://doi.org/10.1126/scisignal.aam7464.
Goetz, S. C., & Anderson, K. V. (2010). The primary cilium: A signalling centre during vertebrate development. Nature Reviews Genetics, 11(5), 331-344. https://doi.org/10.1038/nrg2774.
Gow, M. D., Seymour, C. B., Byun, S. H., & Mothersill, C. E. (2008). Effect of dose rate on the radiation-induced bystander response. Physics in Medicine and Biology, 53(1), 119-132. https://doi.org/10.1088/0031-9155/53/1/008.
Gow, M. D., Seymour, C. B., Ryan, L. A., & Mothersill, C. E. (2010). Induction of bystander response in human glioma cells using high-energy electrons: A role for TGF-β1. Radiation Research, 173(6), 769-778. https://doi.org/10.1667/rr1895.1.
Han, S. J., Jung, J. K., Im, S.-S., Lee, S.-R., Jang, B.-C., Park, K. M., & Kim, J. I. (2018). Deficiency of primary cilia in kidney epithelial cells induces epithelial to mesenchymal transition. Biochemical and Biophysical Research Communications, 496(2), 450-454. https://doi.org/10.1016/j.bbrc.2018.01.079.
Hu, L., Yin, X., Zhang, Y., Pang, A., Xie, X., Yang, S., Zhu, C., Li, Y., Zhang, B., Huang, Y., Tian, Y., Wang, M., Cao, W., Chen, S., Zheng, Y., Ma, S., Dong, F., Hao, S., Feng, S., … Cheng, T. (2021). Radiation-induced bystander effects impair transplanted human hematopoietic stem cells via oxidative DNA damage. Blood, 137(24), 3339-3350. https://doi.org/10.1182/blood.2020007362.
Hu, W., Xu, S., Yao, B., Hong, M., Wu, X., Pei, H., Chang, L., Ding, N., Gao, X., Ye, C., Wang, J., Hei, T. K., & Zhou, G. (2014). MiR-663 inhibits radiation-induced bystander effects by targeting TGFB1 in a feedback mode. RNA Biology, 11(9), 1189-1198. https://doi.org/10.4161/rna.34345.
Iyer, R., Lehnert, B. E., & Svensson, R. (2000). Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Research, 60(5), 1290-1298.
Izawa, I., Goto, H., Kasahara, K., & Inagaki, M. (2015). Current topics of functional links between primary cilia and cell cycle. Cilia, 4, 12. https://doi.org/10.1186/s13630-015-0021-1.
Jenks, A. D., Vyse, S., Wong, J. P., Kostaras, E., Keller, D., Burgoyne, T., Shoemark, A., Tsalikis, A., de la Roche, M., Michaelis, M., Cinatl, J., Huang, P. H., & Tanos, B. E. (2018). Primary cilia mediate diverse kinase inhibitor resistance mechanisms in cancer. Cell Reports, 23(10), 3042-3055. https://doi.org/10.1016/j.celrep.2018.05.016.
Jiang, Y., Chen, X., Tian, W., Yin, X., Wang, J., & Yang, H. (2014). The role of TGF-β1-miR-21-ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. British Journal of Cancer, 111(4), 772-780. https://doi.org/10.1038/bjc.2014.368.
Kasahara, K., & Inagaki, M. (2021). Primary ciliary signaling: Links with the cell cycle. Trends in Cell Biology, 31(12), 954-964. https://doi.org/10.1016/j.tcb.2021.07.009.
Khodamoradi, E., Hoseini-Ghahfarokhi, M., Amini, P., Motevaseli, E., Shabeeb, D., Musa, A. E., Najafi, M., & Farhood, B. (2020). Targets for protection and mitigation of radiation injury. Cellular and Molecular Life Sciences, 77(16), 3129-3159. https://doi.org/10.1007/s00018-020-03479-x.
Kim, J., Lee, J. E., Heynen-Genel, S., Suyama, E., Ono, K., Lee, K., Ideker, T., Aza-Blanc, P., & Gleeson, J. G. (2010). Functional genomic screen for modulators of ciliogenesis and cilium length. Nature, 464(7291), 1048-1051. https://doi.org/10.1038/nature08895.
Leu, J. D., Wang, C. Y., Lo, C. C., Lin, M. Y., Chang, C. Y., Hung, W. C., Lin, S. T., Wang, B. S., & Lee, Y. J. (2021). Involvement of c-Myc in low dose radiation-induced senescence enhanced migration and invasion of unirradiated cancer cells. Aging, 13(18), 22208-22231. https://doi.org/10.18632/aging.203527.
Li, J., Qi, Y., Li, B., Liu, Y., Yang, K., Zhang, Z., Zhu, J., & Du, E. (2023). STIL/AURKA axis promotes cell proliferation by influencing primary cilia formation in bladder cancer. Journal of Translational Medicine, 21(1), 281. https://doi.org/10.1186/s12967-023-04118-2.
Mohamad, O., Yamada, S., & Durante, M. (2018). Clinical indications for carbon ion radiotherapy. Clinical Oncology, 30(5), 317-329. https://doi.org/10.1016/j.clon.2018.01.006.
Mönnich, M., Borgeskov, L., Breslin, L., Jakobsen, L., Rogowski, M., Doganli, C., Schrøder, J. M., Mogensen, J. B., Blinkenkjaer, L., Harder, L. M., Lundberg, E., Geimer, S., Christensen, S. T., Andersen, J. S., Larsen, L. A., & Pedersen, L. B. (2018). CEP128 localizes to the subdistal appendages of the mother centriole and regulates TGF-β/BMP signaling at the primary cilium. Cell Reports, 22(10), 2584-2592. https://doi.org/10.1016/j.celrep.2018.02.043.
Narayanan, P. K., Goodwin, E. H., & Lehnert, B. E. (1997). Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Research, 57(18), 3963-3971.
Novarino, G., Akizu, N., & Gleeson, J. G. (2011). Modeling human disease in humans: The ciliopathies. Cell, 147(1), 70-79. https://doi.org/10.1016/j.cell.2011.09.014.
Patwardhan, D., Mani, S., Passemard, S., Gressens, P., & El Ghouzzi, V. (2018). STIL balancing primary microcephaly and cancer. Cell Death & Disease, 9(2), 65. https://doi.org/10.1038/s41419-017-0101-9.
Pazour, G. J., Dickert, B. L., Vucica, Y., Seeley, E. S., Rosenbaum, J. L., Witman, G. B., & Cole, D. G. (2000). Chlamydomonas IFT 88 and its mouse homologue, polycystic kidney disease gene tg 737, are required for assembly of cilia and flagella. The Journal of Cell Biology, 151, 709-718. https://doi.org/10.1083/jcb.151.3.709.
Peng, Y., Zhang, M., Zheng, L., Liang, Q., Li, H., Chen, J. T., Guo, H., Yoshina, S., Chen, Y. Z., Zhao, X., Wu, X., Liu, B., Mitani, S., Yu, J. S., & Xue, D. (2017). Cysteine protease cathepsin B mediates radiation-induced bystander effects. Nature, 547(7664), 458-462. https://doi.org/10.1038/nature23284.
Qu, P., Shao, Z. A., Wang, B., He, J. P., Zhang, Y. N., Wei, W. J., Hua, J. R., Zhou, H., Lu, D., Ding, N., & Wang, J. F. (2022). MiR-663a inhibits radiation-induced epithelium-to-mesenchymal transition by targeting TGF-β1. Biomedical and Environmental Sciences: BES, 35(5), 437-447. https://doi.org/10.3967/bes2022.059.
Rybkina, V. L., Bannikova, M. V., Adamova, G. V., Dörr, H., Scherthan, H., & Azizova, T. V. (2018). Immunological markers of chronic occupational radiation exposure. Health Physics, 115(1), 108-113. https://doi.org/10.1097/HP.0000000000000855.
Schilpp, C., Lochbaum, R., Braubach, P., Jonigk, D., Frick, M., Dietl, P., & Wittekindt, O. H. (2021). TGF-β1 increases permeability of ciliated airway epithelia via redistribution of claudin 3 from tight junction into cell nuclei. Pflügers Archiv-European Journal of Physiology, 473(2), 287-311. https://doi.org/10.1007/s00424-020-02501-2.
Shao, C., Folkard, M., & Prise, K. M. (2008). Role of TGF-β1 and nitric oxide in the bystander response of irradiated glioma cells. Oncogene, 27(4), 434-440. https://doi.org/10.1038/sj.onc.1210653.
Wang, H., Yu, K. N., Hou, J., Liu, Q., & Han, W. (2015). Radiation-induced bystander effect: Early process and rapid assessment. Cancer Letters, 356(1), 137-144. https://doi.org/10.1016/j.canlet.2013.09.031.
Wei, L., Ma, W., Cai, H., Peng, S. P., Tian, H. B., Wang, J. F., Gao, L., & He, J. P. (2022). Inhibition of ciliogenesis enhances the cellular sensitivity to temozolomide and ionizing radiation in human glioblastoma cells. Biomedical and Environmental Sciences: BES, 35(5), 419-436. https://doi.org/10.3967/bes2022.058.
Xiao, H., Zhang, T., Li, C., Cao, Y., Wang, L., Chen, H., Li, S., Guan, C., Hu, J., Chen, D., Chen, C., & Lu, H. (2022). Mechanical stimulation promotes enthesis injury repair by mobilizing Prrx1(+) cells via ciliary TGF-beta signaling. eLife, 11, e73614. https://doi.org/10.7554/eLife.73614.
Xu, S., Ding, N., Pei, H., Hu, W., Wei, W., Zhang, X., Zhou, G., & Wang, J. (2014). MiR-21 is involved in radiation-induced bystander effects. RNA Biology, 11(9), 1161-1170. https://doi.org/10.4161/rna.34380.
Xu, S., Wang, J., Ding, N., Hu, W., Zhang, X., Wang, B., Hua, J., Wei, W., & Zhu, Q. (2015). Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biology, 12(12), 1355-1363. https://doi.org/10.1080/15476286.2015.1100795.
Yang, H., Magpayo, N., Rusek, A., Chiang, I. H., Sivertz, M., & Held, K. D. (2011). Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells. Radiation Research, 176(6), 695-705. https://doi.org/10.1667/rr2674.1.
Yiangou, L., Grandy, R. A., Morell, C. M., Tomaz, R. A., Osnato, A., Kadiwala, J., Muraro, D., Garcia-Bernardo, J., Nakanoh, S., Bernard, W. G., Ortmann, D., McCarthy, D. J., Simonic, I., Sinha, S., & Vallier, L. (2019). Method to synchronize cell cycle of human pluripotent stem cells without affecting their fundamental characteristics. Stem Cell Reports, 12(1), 165-179. https://doi.org/10.1016/j.stemcr.2018.11.020.
Yu, M., Wang, X., Liu, Y., & Qiao, J. (2019). Cytokine release kinetics of concentrated growth factors in different scaffolds. Clinical Oral Investigations, 23(4), 1663-1671. https://doi.org/10.1007/s00784-018-2582-z.
معلومات مُعتمدة: Science Fund for Distinguished Young Scholars of Gansu Province; 145RTSA012 Science and Technology Research Project of Gansu Province; 21JR7RA108 Science and Technology Research Project of Gansu Province; xbzglzb2022003 West Light Foundation of the Chinese Academy of Sciences; 12275329 National Natural Science Foundation of China; 2375355 National Natural Science Foundation of China; 12175289 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: DNA damages; TGF-β1; ionizing radiation; primary cilium; radiation-induced bystander effects
المشرفين على المادة: 9007-49-2 (DNA)
0 (RNA, Small Interfering)
0 (Transforming Growth Factor beta)
0 (Transforming Growth Factor beta1)
تواريخ الأحداث: Date Created: 20231127 Date Completed: 20240215 Latest Revision: 20240215
رمز التحديث: 20240215
DOI: 10.1002/jcp.31163
PMID: 38009273
قاعدة البيانات: MEDLINE
الوصف
تدمد:1097-4652
DOI:10.1002/jcp.31163